In decision theory and economics, ambiguity aversion (also known as uncertainty aversion) is a preference for known risks over unknown risks. An ambiguity-averse individual would rather choose an alternative where the probability distribution of the outcomes is known over one where the probabilities are unknown. This behavior was first introduced through the Ellsberg paradox (people prefer to bet on the outcome of an urn with 50 red and 50 black balls rather than to bet on one with 100 total balls but for which the number of black or red balls is unknown).
There are two categories of imperfectly predictable events between which choices must be made: risky and ambiguous events (also known as Knightian uncertainty). Risky events have a known probability distribution over outcomes while in ambiguous events the probability distribution is not known. The reaction is behavioral and still being formalized. Ambiguity aversion can be used to explain incomplete contracts, volatility in stock markets, and selective abstention in elections (Ghirardato & Marinacci, 2001).
The concept is expressed in the English proverb: "Better the devil you know than the devil you don't."
The distinction between ambiguity aversion and risk aversion is important but subtle. Risk aversion comes from a situation where a probability can be assigned to each possible outcome of a situation and it is defined by the preference between a risky alternative and its expected value. Ambiguity aversion applies to a situation when the probabilities of outcomes are unknown (Epstein 1999) and it is defined through the preference between risky and ambiguous alternatives, after controlling for preferences over risk.
Using the traditional two-urn Ellsberg choice, urn A contains 50 red balls and 50 blue balls while urn B contains 100 total balls (either red or blue) but the number of each is unknown. An individual who prefers a certain payoff strictly smaller than 10overabetthatpays20 if the color of a ball drawn from urn A is guessed correctly and $0 otherwise is said to be risk averse but nothing can be said about her preferences over ambiguity.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course provides an overview of the theory of asset pricing and portfolio choice theory following historical developments in the field and putting
emphasis on theoretical models that help our unde
This course provides students with a working knowledge of macroeconomic models that explicitly incorporate financial markets. The goal is to develop a broad and analytical framework for analyzing the
The aim of this course is to expose EPFL bachelor students to some of the main areas in financial economics. The course will be organized around six themes. Students will obtain both practical insight
vignette|Daniel Ellseberg, à l'origine du paradoxe, en 2006 Le paradoxe d'Ellsberg est un phénomène connu de la théorie de la décision. Lorsque des gens ont à choisir entre deux options, la majorité se décide pour celle dont la loi de probabilité est connue. Cela se trouve en contradiction avec le principe de la chose sûre de la théorie de la décision. Daniel Ellsberg a décrit l'expérience suivante en 1961 : Dans une urne, on place 90 boules, dont 30 sont rouges. Les boules restantes sont jaunes ou noires, leur distribution est inconnue.
Le risque est la possibilité de survenue d'un événement indésirable, la probabilité d’occurrence d'un péril probable ou d'un aléa. Le risque est une notion complexe, de définitions multiples car d'usage multidisciplinaire. Néanmoins, il est un concept très usité depuis le , par exemple sous la forme de l'expression , notamment pour qualifier, dans le sens commun, un événement, un inconvénient qu'il est raisonnable de prévenir ou de redouter l'éventualité.
La théorie de l'utilité espérée (aussi appelée théorie EU, de l'anglais « expected utility ») est une théorie de la décision en environnement risqué développée par John von Neumann et Oskar Morgenstern dans leur ouvrage Theory of Games and Economic Behavior (1944). Introduisons d'abord quelques notations: L'incertitude est décrite par un ensemble d'états du monde partitionné par la famille de parties (de taille ). Un élément de est appelé événement. Une variable aléatoire est une fonction qui associe à chaque un résultat noté .
Explore la sélection dynamique des portefeuilles, les fonctions d'utilité logarithmique, l'aversion au risque et les problèmes de contrôle optimaux sur les marchés financiers.
Every engineering calculation is an approximation of reality, with inevitable uncertainties involved. This fact implies that a reliability verification accounting for the uncertainties is a necessary step in the design and assessment of structures. Nowaday ...
Using data on international equity portfolio allocations by U.S. mutual funds, we estimate a portfolio expression derived from a standard mean-variance portfolio model extended with portfolio frictions. The optimal portfolio depends on the previous month a ...
OXFORD UNIV PRESS INC2023
,
We characterize the unique equilibrium in an economy populated by strategic CARA investors who trade multiple risky assets with arbitrarily distributed payoffs. We use our explicit solution to study the joint behavior of illiquidity of option contracts. Op ...