Résumé
En génétique, la duplication génétique correspond à la multiplication de matériel génétique sur un chromosome. Il existe plusieurs mécanismes qui résultent de la duplication soit d'une large portion chromosomique, soit d'un gène ou bien d'une suite nucléotidique. Ces remaniements du génome représentent un moteur important dans l'évolution des génomes. Le doublement d'un gène crée une copie supplémentaire dégagée de la pression de sélection, ce qui peut permettre à la copie de muer à nouveau sans conséquences nuisibles à l'organisme. C'est un des mécanismes importants de l'évolution moléculaire. Cependant, dans de nombreux cas, ces altérations sont responsables de maladies génétiques à cause du surplus de données génétiques conduisant à des problèmes au cours du développement. De plus, l'amplification génique peut contribuer à la croissance d'une tumeur. Par exemple l'oncogène C-myc est souvent amplifié dans de nombreuses tumeurs. Au cours de leur évolution plusieurs espèces eucaryotes ont subi une duplication complète de leur génome. On parle alors de paléoploïdie. Par exemple, chez la levure du boulanger (Saccharomyces cerevisiae), son génome s'est dupliqué il y a 100 millions d'années. Le génome de nombreuses plantes est polyploïde. On peut citer le blé qui est hexaploïde (6 copies de son génome). Récemment, une collaboration franco-italienne a permis de séquencer le génome de la vigne, Vitis vinifera qui révéla que l'ancêtre des plantes dicotylédones a subi plusieurs évènements de duplication de son génome après la divergence des plantes monocotylédones et dicotylédones ; la plante ancestrale dicotylédone devait être hexaploïde. L'hypothèse émise serait que cette duplication du génome est à l'origine de la radiation des plantes dicotylédones. Il existe deux mécanismes permettant la duplication complète d'un génome : autopolyploïdie : la non-disjonction des chromosomes dans la lignée germinale au cours de la méiose crée des gamètes diploïdes.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (6)
BIO-463: Genomics and bioinformatics
This course covers various data analysis approaches associated with applications of DNA sequencing technologies, from genome sequencing to quantifying gene expression, transcription factor binding and
BIO-679: Practical - Suter Lab
Bioluminescence imaging and data analysis Splinkerette PCR (to analyze genomic insertion site of a transgene). The students will obtain theoretical and practical insight into embryonic stem cell biol
BIO-109: Introduction to life sciences (for IC)
Ce cours présente les principes fondamentaux à l'œuvre dans les organismes vivants. Autant que possible, l'accent est mis sur les contributions de l'Informatique aux progrès des Sciences de la Vie.
Afficher plus
Séances de cours associées (32)
Duplication du génome : mécanismes et modèles
Explore les mécanismes de duplication du génome, les modèles de réplication de l'ADN et les preuves expérimentales appuyant le modèle semi-conservateur de Watson et Crick.
Analyse des données génomiques : Fondements de la biologie moléculaire
Couvre les fondamentaux de la biologie moléculaire pour l'analyse des données génomiques, y compris la structure de l'ADN, les gènes, les protéines, l'ARN et la PCR.
ADN: PCR et techniques de séquençage
Explore l'ingénierie de l'ADN à travers la PCR, le séquençage Sanger, le projet du génome humain, l'ADN recombinant, la manipulation de l'ADN bactérien et CRISPR / Cas9.
Afficher plus
Publications associées (115)