Intégration d'applications d'entrepriseL'intégration d'applications d'entreprise ou IAE (en anglais enterprise application integration, EAI) est une architecture intergicielle permettant à des applications hétérogènes de gérer leurs échanges. On la place dans la catégorie des technologies informatiques d'intégration métier (business integration) et d'urbanisation. Sa particularité est d'échanger les données en pseudo temps réel. Par extension, l'abréviation EAI désigne un système informatique permettant de réaliser cette architecture en implémentant les flux interapplicatifs du système d'information.
Data virtualizationData virtualization is an approach to data management that allows an application to retrieve and manipulate data without requiring technical details about the data, such as how it is formatted at source, or where it is physically located, and can provide a single customer view (or single view of any other entity) of the overall data. Unlike the traditional extract, transform, load ("ETL") process, the data remains in place, and real-time access is given to the source system for the data.
Operational data storeUn operational data store (ou ODS) est une base de données conçue pour centraliser les données issues de sources hétérogènes afin de faciliter les opérations d'analyse et de reporting. L'intégration de ces données implique souvent une purge des informations redondantes. Un ODS est généralement destiné à contenir des données de niveau fin comme un prix ou le montant d'une vente, en opposition aux données agrégées tel que le montant total des ventes. Les données agrégées sont stockées dans un entrepôt de données (data warehouse).
DatalogDatalog est un langage de requête et de règles pour les bases de données déductives. Il correspond à un sous ensemble de Prolog. Ses origines remontent aux débuts de la programmation logique. Datalog a la syntaxe suivante.
Schema matchingThe terms schema matching and mapping are often used interchangeably for a database process. For this article, we differentiate the two as follows: schema matching is the process of identifying that two objects are semantically related (scope of this article) while mapping refers to the transformations between the objects. For example, in the two schemas DB1.Student (Name, SSN, Level, Major, Marks) and DB2.Grad-Student (Name, ID, Major, Grades); possible matches would be: DB1.Student ≈ DB2.Grad-Student; DB1.
Gestion des données de référenceLa gestion des données de référence ou gestion des données maîtres (GDR, plus connue sous le vocable anglais de master data management ou MDM) est une branche des technologies de l'information qui définit un ensemble de concepts et de processus visant à définir, stocker, maintenir, distribuer et imposer une vue complète, fiable et à jour des données référentielles au sein d’un système d’information, indépendamment des canaux de communications, du secteur d'activité ou des subdivisions métiers ou géographiqu
Science des donnéesLa science des données est l'étude de l’extraction automatisée de connaissance à partir de grands ensembles de données. Plus précisément, la science des données est un domaine interdisciplinaire qui utilise des méthodes, des processus, des algorithmes et des systèmes scientifiques pour extraire des connaissances et des idées à partir de nombreuses données structurées ou non . Elle est souvent associée aux données massives et à l'analyse des données.
Semantic heterogeneitySemantic heterogeneity is when database schema or datasets for the same domain are developed by independent parties, resulting in differences in meaning and interpretation of data values. Beyond structured data, the problem of semantic heterogeneity is compounded due to the flexibility of semi-structured data and various tagging methods applied to documents or unstructured data. Semantic heterogeneity is one of the more important sources of differences in heterogeneous datasets.
Data curationData curation is the organization and integration of data collected from various sources. It involves annotation, publication and presentation of the data such that the value of the data is maintained over time, and the data remains available for reuse and preservation. Data curation includes "all the processes needed for principled and controlled data creation, maintenance, and management, together with the capacity to add value to data".
Data wranglingData wrangling, sometimes referred to as data munging, is the process of transforming and mapping data from one "raw" data form into another format with the intent of making it more appropriate and valuable for a variety of downstream purposes such as analytics. The goal of data wrangling is to assure quality and useful data. Data analysts typically spend the majority of their time in the process of data wrangling compared to the actual analysis of the data.