In graph theory, a family of graphs is said to have bounded expansion if all of its shallow minors are sparse graphs. Many natural families of sparse graphs have bounded expansion. A closely related but stronger property, polynomial expansion, is equivalent to the existence of separator theorems for these families. Families with these properties have efficient algorithms for problems including the subgraph isomorphism problem and model checking for the first order theory of graphs.
A t-shallow minor of a graph G is defined to be a graph formed from G by contracting a collection of vertex-disjoint subgraphs of radius t, and deleting the remaining vertices of G. A family of graphs has bounded expansion if there exists a function f such that, in every t-shallow minor of a graph in the family, the ratio of edges to vertices is at most f(t).
Equivalent definitions of classes of bounded expansions are that all shallow minors have chromatic number bounded by a function of t, or that the given family has a bounded value of a topological parameter. Such a parameter is a graph invariant that is monotone under taking subgraphs, such that the parameter value can change only in a controlled way when a graph is subdivided, and such that a bounded parameter value implies that a graph has bounded degeneracy.
A stronger notion is polynomial expansion, meaning that the function f used to bound the edge density of shallow minors is a polynomial. If a hereditary graph family obeys a separator theorem, stating that any n-vertex graph in the family can be split into pieces with at most n/2 vertices by the removal of O(nc) vertices for some constant c < 1, then that family necessarily has polynomial expansion. Conversely, graphs with polynomial expansion have sublinear separator theorems.
Because of the connection between separators and expansion, every minor-closed graph family, including the family of planar graphs, has polynomial expansion.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En théorie des graphes, le théorème du séparateur planaire, stipule que tout graphe planaire peut être divisé en parties plus petites en supprimant un petit nombre de sommets. Plus précisément, le théorème affirme qu'il existe un ensemble de sommets d'un graphe à sommets dont la suppression partitionne le graphe en sous-graphes disjoints dont chacun a au plus sommets. Une forme plus faible du théorème séparateur avec un séparateur de taille au lieu de a été prouvée à l'origine par Ungar (1951), et la forme avec la borne asymptotique plus fine sur la taille du séparateur a été prouvée pour la première fois par Lipton & Tarjan (1979).
En théorie des graphes, un invariant de graphe est une quantité qui n'est pas modifiée par isomorphisme de graphes. Un invariant de graphe ne dépend donc que de la structure abstraite et pas des particularités de la représentation comme l'étiquetage ou le tracé. De nombreux invariants sont conservés par certains préordres ou ordres partiels naturels sur les graphes : Une propriété est monotone si elle est héritée par les sous-graphes. Le caractère biparti, sans triangle, ou planaire sont des exemples de propriétés monotones.
thumb|upright=1.5|Recherche exhaustive d'une 4-clique dans ce graphe à 7 sommets en testant la complétude des C(7,4)= 35 sous-graphes à 4 sommets. En informatique, le problème de la clique est un problème algorithmique qui consiste à trouver des cliques (sous-ensembles de sommets tous adjacents deux à deux, également appelés sous-graphes complets) dans un graphe. Ce problème a plusieurs formulations différentes selon les cliques et les informations sur les cliques devant être trouvées.
In this course we will define rigorous mathematical models for computing on large datasets, cover main algorithmic techniques that have been developed for sublinear (e.g. faster than linear time) data
Consider the family of bounded degree graphs in any minor-closed family (such as planar graphs). Let d be the degree bound and n be the number of vertices of such a graph. Graphs in these classes have hyperfinite decompositions, where, one removes a small ...
IEEE COMPUTER SOC2022
, ,
A directed acyclic graph (DAG) is the most common graphical model for representing causal relationships among a set of variables. When restricted to using only observational data, the structure of the ground truth DAG is identifiable only up to Markov equi ...
AAAI Press2019
, ,
We consider the problem of testing graph cluster structure: given access to a graph G = (V, E), can we quickly determine whether the graph can be partitioned into a few clusters with good inner conductance, or is far from any such graph? This is a generali ...