Concept

Invariant de graphe

Résumé
In graph theory, a graph property or graph invariant is a property of graphs that depends only on the abstract structure, not on graph representations such as particular labellings or drawings of the graph. While graph drawing and graph representation are valid topics in graph theory, in order to focus only on the abstract structure of graphs, a graph property is defined to be a property preserved under all possible isomorphisms of a graph. In other words, it is a property of the graph itself, not of a specific drawing or representation of the graph. Informally, the term "graph invariant" is used for properties expressed quantitatively, while "property" usually refers to descriptive characterizations of graphs. For example, the statement "graph does not have vertices of degree 1" is a "property" while "the number of vertices of degree 1 in a graph" is an "invariant". More formally, a graph property is a class of graphs with the property that any two isomorphic graphs either both belong to the class, or both do not belong to it. Equivalently, a graph property may be formalized using the indicator function of the class, a function from graphs to Boolean values that is true for graphs in the class and false otherwise; again, any two isomorphic graphs must have the same function value as each other. A graph invariant or graph parameter may similarly be formalized as a function from graphs to a broader class of values, such as integers, real numbers, sequences of numbers, or polynomials, that again has the same value for any two isomorphic graphs. Many graph properties are well-behaved with respect to certain natural partial orders or preorders defined on graphs: A graph property P is hereditary if every induced subgraph of a graph with property P also has property P. For instance, being a perfect graph or being a chordal graph are hereditary properties. A graph property is monotone if every subgraph of a graph with property P also has property P. For instance, being a bipartite graph or being a triangle-free graph is monotone.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.