The stochastic block model is a generative model for random graphs. This model tends to produce graphs containing communities, subsets of nodes characterized by being connected with one another with particular edge densities. For example, edges may be more common within communities than between communities. Its mathematical formulation has been firstly introduced in 1983 in the field of social network by Paul W. Holland et al. The stochastic block model is important in statistics, machine learning, and network science, where it serves as a useful benchmark for the task of recovering community structure in graph data.
The stochastic block model takes the following parameters:
The number of vertices;
a partition of the vertex set into disjoint subsets , called communities;
a symmetric matrix of edge probabilities.
The edge set is then sampled at random as follows: any two vertices and are connected by an edge with probability . An example problem is: given a graph with vertices, where the edges are sampled as described, recover the groups .
If the probability matrix is a constant, in the sense that for all , then the result is the Erdős–Rényi model . This case is degenerate—the partition into communities becomes irrelevant—but it illustrates a close relationship to the Erdős–Rényi model.
The planted partition model is the special case that the values of the probability matrix are a constant on the diagonal and another constant off the diagonal. Thus two vertices within the same community share an edge with probability , while two vertices in different communities share an edge with probability . Sometimes it is this restricted model that is called the stochastic block model. The case where is called an assortative model, while the case is called disassortative.
Returning to the general stochastic block model, a model is called strongly assortative if whenever : all diagonal entries dominate all off-diagonal entries. A model is called weakly assortative if whenever : each diagonal entry is only required to dominate the rest of its own row and column.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Internet analytics is the collection, modeling, and analysis of user data in large-scale online services, such as social networking, e-commerce, search, and advertisement. This class explores a number
This course covers the statistical physics approach to computer science problems ranging from graph theory and constraint satisfaction to inference and machine learning. In particular the replica and
En sciences humaines et sociales, l'expression réseau social désigne un agencement de liens entre des individus ou des organisations, constituant un groupement qui a un sens : la famille, les collègues, un groupe d'amis, une communauté, etc. L'anthropologue australien John Arundel Barnes a introduit l'expression en 1954. L'analyse des réseaux sociaux est devenue une spécialité universitaire dans le champ de la sociologie, se fondant sur la théorie des réseaux et l'usage des graphes.
This thesis focuses on two selected learning problems: 1) statistical inference on graphs models, and, 2) gradient descent on neural networks, with the common objective of defining and analysing the measures that characterize the fundamental limits.In the ...
Information retrieval (IR) systems such as search engines are important for people to find what they need among the tremendous amount of data available in their organization or on the Internet. These IR systems enable users to search in a large data collec ...
In this paper, we propose a novel approach that employs kinetic equations to describe the collective dynamics emerging from graph-mediated pairwise interactions in multi-agent systems. We formally show that for large graphs and specific classes of interact ...