Vision processing unitA vision processing unit (VPU) is (as of 2023) an emerging class of microprocessor; it is a specific type of AI accelerator, designed to accelerate machine vision tasks. Vision processing units are distinct from video processing units (which are specialised for video encoding and decoding) in their suitability for running machine vision algorithms such as CNN (convolutional neural networks), SIFT (scale-invariant feature transform) and similar.
KerasKeras est une bibliothèque open source écrite en python. La bibliothèque Keras permet d'interagir avec les algorithmes de réseaux de neurones profonds et d'apprentissage automatique, notamment Tensorflow, Theano, Microsoft Cognitive Toolkit ou PlaidML. Conçue pour permettre une expérimentation rapide avec les réseaux de neurones profonds, elle se concentre sur son ergonomie, sa modularité et ses capacites d’extension. Elle a été développée dans le cadre du projet ONEIROS (Open-ended Neuro-Electronic Intelligent Robot Operating System).
Differentiable programmingDifferentiable programming is a programming paradigm in which a numeric computer program can be differentiated throughout via automatic differentiation. This allows for gradient-based optimization of parameters in the program, often via gradient descent, as well as other learning approaches that are based on higher order derivative information. Differentiable programming has found use in a wide variety of areas, particularly scientific computing and artificial intelligence.
Dérivation automatiqueEn mathématique et en calcul formel, la dérivation automatique (DA), également appelé dérivation algorithmique, dérivation formelle, ou auto-dérivation est un ensemble de techniques d'évaluation de la dérivée d'une fonction par un programme informatique. La dérivation automatique exploite le fait que chaque programme informatique, aussi compliqué soit-il, exécute une séquence d'opérations arithmétiques élémentaires (addition, soustraction, multiplication, division, etc.) et des fonctions élémentaires (exp, log,sin, cos, etc.
Algorithme du gradient stochastiqueL'algorithme du gradient stochastique est une méthode de descente de gradient (itérative) utilisée pour la minimisation d'une fonction objectif qui est écrite comme une somme de fonctions différentiables. À la fois l'estimation statistique et l'apprentissage automatique s'intéressent au problème de la minimisation d'une fonction objectif qui a la forme d'une somme : où le paramètre qui minimise doit être estimé. Chacune des fonctions est généralement associée avec la -ème observation de l'ensemble des données (utilisées pour l'apprentissage).
Réseau de neurones récurrentsUn réseau de neurones récurrents (RNN pour recurrent neural network en anglais) est un réseau de neurones artificiels présentant des connexions récurrentes. Un réseau de neurones récurrents est constitué d'unités (neurones) interconnectées interagissant non-linéairement et pour lequel il existe au moins un cycle dans la structure. Les unités sont reliées par des arcs (synapses) qui possèdent un poids. La sortie d'un neurone est une combinaison non linéaire de ses entrées.
Redresseur (réseaux neuronaux)vignette|Graphique de la fonction Unité Linéaire Rectifiée En mathématiques, la fonction Unité Linéaire Rectifiée (ou ReLU pour Rectified Linear Unit) est définie par : pour tout réel Elle est fréquemment utilisée comme fonction d'activation dans le contexte du réseau de neurones artificiels pour sa simplicité de calcul, en particulier de sa dérivée. Un désavantage de la fonction ReLU est que sa dérivée devient nulle lorsque l'entrée est négative ce qui peut empêcher la rétropropagation du gradient.