Explore des méthodes d'apprentissage d'ensemble telles que le Ensachage et le Boosting pour améliorer les performances des modèles grâce à l'agrégation et à la sélection de modèles instables.
Explore les forêts aléatoires en tant que méthode d'ensemble puissante pour la classification, en discutant des stratégies d'ensachage, d'empilage, de renforcement et d'échantillonnage.
Couvre les méthodes d'ensemble comme les forêts aléatoires et les baies de Naive de Gaussian, expliquant comment elles améliorent la précision de prédiction et estimer les distributions gaussiennes conditionnelles.