Spinal cord injury research seeks new ways to cure or treat spinal cord injury in order to lessen the debilitating effects of the injury in the short or long term. There is no cure for SCI, and current treatments are mostly focused on spinal cord injury rehabilitation and management of the secondary effects of the condition. Two major areas of research include neuroprotection, ways to prevent damage to cells caused by biological processes that take place in the body after the injury, and neuroregeneration, regrowing or replacing damaged neural circuits.
Secondary injury takes place minutes to weeks after the initial insult and includes a number of cascading processes that further harm tissues already damaged by the primary injury. It results in formation of a glial scar, which impedes axonal growth.Secondary injuries can occur from different forms of stress added to the spinal cord in forms such as additional contusions, compressions, kinking, or stretching of the spinal cord.
Complications from a secondary SCI are a result of a homeostatic imbalance potentially leading to metabolic and hemostatic changes from an inflammatory response. Potential immediate affects of secondary SCI include neuronal injury, neuroinflammation, breakdown of blood-spinal cord barrier (BSCB), ischemic dysfunction, oxidative stress, and daily-life function complications.
Animals used as SCI model organisms in research include mice, rats, cats, dogs, pigs, and non-human primates; the latter are close to humans but raise ethical concerns about primate experimentation. Special devices exist to deliver blows of specific, monitored force to the spinal cord of an experimental animal. There are various mechanical impact classifications of these injuries that can be replicated in an animal model. This includes contusion, compression, collagenase and ischemia reperfusion, distraction, dislocation, and transection.
Limitations of these model experiments are common. For instance, ischemia-reperfusion SCI involves the interruption of blood flow to the spinal cord.