Un porteur de charge est, en sciences physiques, une particule ou une quasi-particule qui porte une charge électrique. En se déplaçant, les porteurs de charge créent un courant électrique, comme les ions dans les solutions liquides et les électrons dans les solides. En électronique cette notion est incontournable, les deux porteurs de charge considérés sont les électrons, portant une charge −e, les trous, peuvent se déplacer assez librement dans le réseau cristallin. Ils sont souvent représentés comme formant un nuage, et leur comportement peut être modélisé par celui d'un gaz de Fermi. Comme leurs électrons se déplacent uniformément en suivant le gradient de tension, les métaux conduisent le courant électrique. Les solutions ioniques conduisent l'électricité pour une raison similaire, les porteurs de charge sont également libres. Ce sont les cations et anions de la solution. Une solution d'eau pure est donc à température ambiante moins bonne conductrice qu'une solution salée qui contient forcément plus d'ions puisqu'elle contient en plus des ions H3O+ et OH-, des ions Na+ et Cl-. C'est aussi pourquoi les composés ioniques sont isolants lorsqu'ils sont solides et deviennent conducteurs en fondant. Le phénomène est similaire dans les plasmas, autre état de la matière que l'on retrouve dans les arcs électriques. Dans les plasmas, la matière est vaporisée et ionisée. Densité de charge La densité de charge électrique désigne la quantité de charge électrique par unité d'espace. Selon que l'on considère un problème à 1, 2 ou 3 dimensions, c'est-à-dire une ligne, une surface ou un volume, on parlera de densité linéique, surfacique ou volumique de charge. Leurs unités sont respectivement le coulomb par mètre (C/m), le coulomb par mètre carré (C/m) et le coulomb par mètre cube (C/m) dans le Système international. Comme il existe des charges négatives comme des charges positives, la densité de charge peut prendre des valeurs négatives. Comme n'importe quelle densité, elle peut varier selon la position.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (24)
MSE-486: Organic electronic materials
This course will introduce students to the field of organic electronic materials. The goal of this course is to discuss the origin of electronic properties in organic materials, charge transport mecha
MICRO-566: Large-area electronics: devices and materials
Introduction to the physical concepts involved in the description of optical and electronic transport properties of thin-film semiconductor materials found in many large-area applications (solar cells
PHYS-201(d): General physics: electromagnetism
The topics covered by the course are concepts of fluid mechanics, waves, and electromagnetism.
Afficher plus
Publications associées (32)
Concepts associés (27)
Dopage (semi-conducteur)
Dans le domaine des semi-conducteurs, le dopage est l'action d'ajouter des impuretés en petites quantités à une substance pure afin de modifier ses propriétés de conductivité. Les propriétés des semi-conducteurs sont en grande partie régies par la quantité de porteurs de charge qu'ils contiennent. Ces porteurs sont les électrons ou les trous. Le dopage d'un matériau consiste à introduire, dans sa matrice, des atomes d'un autre matériau. Ces atomes vont se substituer à certains atomes initiaux et ainsi introduire davantage d'électrons ou de trous.
État plasma
thumb|upright|Le soleil est une boule de plasma. thumb|Lampe à plasma.|168x168px thumb|upright|Les flammes de haute température sont des plasmas. L'état plasma est un état de la matière, tout comme l'état solide, l'état liquide ou l'état gazeux, bien qu'il n'y ait pas de transition brusque pour passer d'un de ces états au plasma ou réciproquement. Il est visible sur Terre, à l'état naturel, le plus souvent à des températures élevées favorables aux ionisations, signifiant l’arrachement d'électrons aux atomes.
Jonction p-n
vignette|230px|Jonction p-n dans du silicium. Sur ce schéma, les régions p et n sont reliées à des contacts métalliques, ce qui suffit à transformer la jonction en diode. vignette|230px|Le symbole d'une diode associé à la représentation d'une jonction p-n. En physique des semi-conducteurs, une jonction p-n désigne une zone du cristal où le dopage varie brusquement, passant d'un dopage p à un dopage n.
Afficher plus
MOOCs associés (4)
Electronique I
Introduction à l’électronique analogique- première partie. Fonctions de base réalisées à l’aide des amplificateurs opérationnels.
Electronique I
Introduction à l’électronique analogique- première partie. Fonctions de base réalisées à l’aide des amplificateurs opérationnels.
Electronique II
Introduction à l’électronique analogique- seconde partie. Fonctions linéaires de base réalisée à l’aide de transistor bipolaire.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.