Dans la théorie du magnétisme quantique, l'hamiltonien de Heisenberg décrit un ensemble de moments magnétiques localisés en interaction. Cet hamiltonien s'écrit :
où est le magnéton de Bohr, est le rapport gyromagnétique du i-ème moment localisé, est un opérateur de spin, est le champ magnétique externe, et est la constante d'échange. Pour l'interaction est antiferromagnétique et pour elle est ferromagnétique.
En général, les sites i sont placés sur les nœuds d'un réseau régulier. Une exception est le cas des verres de spin où les moments magnétiques sont des impuretés magnétiques diluées dans un métal non-magnétique (par exemple du fer dilué dans de l'or ou du manganèse dans du cuivre).
Dans un système sur un réseau biparti formé de deux sous-réseaux A et B, si les spins n'ont pas tous des identiques, par exemple si sur le sous-réseau A et sur le sous-réseau B on parlera d'un modèle ferrimagnétique.
Un concept important dans l'analyse du modèle de Heisenberg est celui de frustration. On dit qu'il y a frustration lorsqu'il n'est pas possible de minimiser indépendamment chaque terme . Ce cas peut se présenter soit dans les verres de spin, soit dans des modèles antiferromagnétiques sur le réseau triangulaire ou le réseau Kagomé. Dans ce dernier cas on parle de frustration déterministe.
Dans un isolant, l'interaction d'échange décroît exponentiellement avec la distance entre les spins localisés car elle dépend du recouvrement des orbitales. On peut donc se restreindre à des interactions uniquement entre les spins premiers voisins ou entre premier et second voisins.
En général, l'interaction est due à un mécanisme de super-échange. Elle est le plus souvent antiferromagnétique. Les règles de Goodenough-Kanamori permettent de prédire le signe des interactions de super-échange dans les oxydes. Si les liaisons entre les ions magnétiques et les ions oxygène font des angles d'environ 180°, l'interaction d'échange entre les ions magnétiques sera antiferromagnétique. Si les angles sont de 90°, les interactions seront ferromagnétiques.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The course is conceived in the perspective of understanding the fundamentals of spintronics. This implies learning about magnetism at the quantum mechanical level, mechanisms for spin relaxation and
Information is processed in physical devices. In the quantum regime the concept of classical bit is replaced by the quantum bit. We introduce quantum principles, and then quantum communications, key d
This course provides an introduction to the modeling of matter at the atomic scale, using interactive jupyter notebooks to see several of the core concepts of materials science in action.
Le 'spin' () est, en physique quantique, une des propriétés internes des particules, au même titre que la masse ou la charge électrique. Comme d'autres observables quantiques, sa mesure donne des valeurs discrètes et est soumise au principe d'incertitude. C'est la seule observable quantique qui ne présente pas d'équivalent classique, contrairement, par exemple, à la position, l'impulsion ou l'énergie d'une particule. Il est toutefois souvent assimilé au moment cinétique (cf de cet article, ou Précession de Thomas).
In quantum physics, the quantum inverse scattering method (QISM) or the algebraic Bethe ansatz is a method for solving integrable models in 1+1 dimensions, introduced by Leon Takhtajan and L. D. Faddeev in 1979. It can be viewed as a quantized version of the classical inverse scattering method pioneered by Norman Zabusky and Martin Kruskal used to investigate the Korteweg–de Vries equation and later other integrable partial differential equations. In both, a Lax matrix features heavily and scattering data is used to construct solutions to the original system.
En mécanique hamiltonienne, un système intégrable au sens de Liouville est un système qui possède un nombre suffisant de indépendantes. Lorsque le mouvement est borné, la dynamique est alors périodique ou quasi périodique. Soit un système à N degrés de liberté qui est décrit à l'instant par : les N coordonnées généralisées les N moments conjugués . À chaque instant, les 2N coordonnées définissent un point dans l'espace des phases Γ = R2N. L'évolution dynamique du système sous le flot hamiltonien se traduit par une courbe continue appelée orbite dans cet espace des phases.
Consider the wave equation with heterogeneous coefficients in the homogenization regime. At large times, the wave interacts in a nontrivial way with the heterogeneities, giving rise to effective dispersive effects. The main achievement of the present wor ...
We show that effectively cold metastable states in one-dimensional photodoped Mott insulators described by the extended Hubbard model exhibit spin, charge, and q-spin separation. Their wave functions in the large on-site Coulomb interaction limit can be ex ...
We microscopically analyze the nearest-neighbor Heisenberg model on the maple leaf lattice through neural quantum state (NQS) and infinite density matrix renormalization group (iDMRG) methods. Embarking to parameter regimes beyond the exact dimer singlet g ...