The quantum Heisenberg model, developed by Werner Heisenberg, is a statistical mechanical model used in the study of critical points and phase transitions of magnetic systems, in which the spins of the magnetic systems are treated quantum mechanically. It is related to the prototypical Ising model, where at each site of a lattice, a spin represents a microscopic magnetic dipole to which the magnetic moment is either up or down. Except the coupling between magnetic dipole moments, there is also a multipolar version of Heisenberg model called the multipolar exchange interaction.
For quantum mechanical reasons (see exchange interaction or ), the dominant coupling between two dipoles may cause nearest-neighbors to have lowest energy when they are aligned. Under this assumption (so that magnetic interactions only occur between adjacent dipoles) and on a 1-dimensional periodic lattice, the Hamiltonian can be written in the form
where is the coupling constant and dipoles are represented by classical vectors (or "spins") σj, subject to the periodic boundary condition .
The Heisenberg model is a more realistic model in that it treats the spins quantum-mechanically, by replacing the spin by a quantum operator acting upon the tensor product , of dimension . To define it, recall the Pauli spin-1/2 matrices
and for and denote , where is the identity matrix.
Given a choice of real-valued coupling constants and , the Hamiltonian is given by
where the on the right-hand side indicates the external magnetic field, with periodic boundary conditions. The objective is to determine the spectrum of the Hamiltonian, from which the partition function can be calculated and the thermodynamics of the system can be studied.
It is common to name the model depending on the values of , and : if , the model is called the Heisenberg XYZ model; in the case of , it is the Heisenberg XXZ model; if , it is the Heisenberg XXX model. The spin 1/2 Heisenberg model in one dimension may be solved exactly using the Bethe ansatz.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course is conceived in the perspective of understanding the fundamentals of spintronics. This implies learning about magnetism at the quantum mechanical level, mechanisms for spin relaxation and
Information is processed in physical devices. In the quantum regime the concept of classical bit is replaced by the quantum bit. We introduce quantum principles, and then quantum communications, key d
This course provides an introduction to the modeling of matter at the atomic scale, using interactive jupyter notebooks to see several of the core concepts of materials science in action.
Spin is an intrinsic form of angular momentum carried by elementary particles, and thus by composite particles such as hadrons, atomic nuclei, and atoms. Spin should not be understood as in the "rotating internal mass" sense: spin is a quantized wave property. The existence of electron spin angular momentum is inferred from experiments, such as the Stern–Gerlach experiment, in which silver atoms were observed to possess two possible discrete angular momenta despite having no orbital angular momentum.
In quantum physics, the quantum inverse scattering method (QISM) or the algebraic Bethe ansatz is a method for solving integrable models in 1+1 dimensions, introduced by Leon Takhtajan and L. D. Faddeev in 1979. It can be viewed as a quantized version of the classical inverse scattering method pioneered by Norman Zabusky and Martin Kruskal used to investigate the Korteweg–de Vries equation and later other integrable partial differential equations. In both, a Lax matrix features heavily and scattering data is used to construct solutions to the original system.
In mathematics, integrability is a property of certain dynamical systems. While there are several distinct formal definitions, informally speaking, an integrable system is a dynamical system with sufficiently many conserved quantities, or first integrals that its motion is confined to a submanifold of much smaller dimensionality than that of its phase space.
We show that effectively cold metastable states in one-dimensional photodoped Mott insulators described by the extended Hubbard model exhibit spin, charge, and q-spin separation. Their wave functions in the large on-site Coulomb interaction limit can be ex ...
We microscopically analyze the nearest-neighbor Heisenberg model on the maple leaf lattice through neural quantum state (NQS) and infinite density matrix renormalization group (iDMRG) methods. Embarking to parameter regimes beyond the exact dimer singlet g ...
Consider the wave equation with heterogeneous coefficients in the homogenization regime. At large times, the wave interacts in a nontrivial way with the heterogeneities, giving rise to effective dispersive effects. The main achievement of the present wor ...