Courant électriqueUn courant électrique est un mouvement d'ensemble de porteurs de charges électriques, généralement des électrons, au sein d'un matériau conducteur. Ces déplacements sont imposés par l'action de la force électromagnétique, dont l'interaction avec la matière est le fondement de l'électricité. On doit au physicien français André-Marie Ampère la distinction entre courant et tension électriques.
Champ magnétiqueEn physique, dans le domaine de l'électromagnétisme, le champ magnétique est une grandeur ayant le caractère d'un champ vectoriel, c'est-à-dire caractérisée par la donnée d'une norme, d’une direction et d’un sens, définie en tout point de l'espace et permettant de modéliser et quantifier les effets magnétiques du courant électrique ou des matériaux magnétiques comme les aimants permanents.
Flux (physique)En physique, un flux est une intégrale de surface de la composante normale d'un champ vectoriel sur une surface donnée. Le champ vectoriel associé est souvent nommé densité de flux. Cette définition rejoint celle du flux en mathématiques. Si dans certains domaines de la physique, le flux est également un débit, lié à un déplacement de matière ou à un transfert d'énergie, ce n'est pas toujours le cas : on aime malgré tout se représenter un flux comme caractéristique de ce qui s'écoule le long des lignes de champs à travers la frontière que marque la surface.
Impédance (électricité)L'impédance électrique mesure l'opposition d'un circuit électrique au passage d'un courant alternatif sinusoïdal. La définition de l'impédance est une généralisation de la loi d'Ohm au courant alternatif. On passe de à , mais avec et de formes sinusoïdales. Le mot impédance fut inventé par Oliver Heaviside en . Il vient du verbe anglais en signifiant « retenir », « faire obstacle à » ; verbe qui dérive lui-même du latin impedire qui veut dire « entraver ».
Force électromotriceLa force électromotrice (f.é.m.), ou électromotance, est un des paramètres caractéristiques d'un générateur électrique. Elle est, contrairement à ce qu'indique son nom, homogène à une tension et s'exprime en volts. Dans un circuit électrique, pour mettre en mouvement des charges, il est nécessaire de fournir du travail, et la force électromotrice correspond au travail que fournit un générateur au circuit par unité de charge. Cette force est le plus souvent fournie par un générateur électrique, qui impose une tension électrique à ses bornes.
Courant alternatifLe courant alternatif (qui peut être abrégé par CA) est un courant électrique périodique qui change de sens deux fois par période et qui transporte des quantités d'électricité alternativement égales dans un sens et dans l'autre. Un courant alternatif a donc une composante continue (valeur moyenne) nulle. Un courant alternatif est caractérisé par sa fréquence, mesurée en hertz (Hz). La fréquence correspond au nombre de périodes du signal en une seconde (une oscillation = une période).
Analogie électro-hydrauliquevignette|Analogie entre un circuit hydraulique (à gauche) et un circuit électronique (à droite). L'analogie électro-hydraulique est une apparence de similitude entre les grandeurs électriques et hydraulique. Comme le courant électrique est invisible et que les processus en jeu dans l'électronique sont souvent difficiles à démontrer, les différents composants électroniques peuvent être représentés par des équivalents hydrauliques.
Series and parallel circuitsTwo-terminal components and electrical networks can be connected in series or parallel. The resulting electrical network will have two terminals, and itself can participate in a series or parallel topology. Whether a two-terminal "object" is an electrical component (e.g. a resistor) or an electrical network (e.g. resistors in series) is a matter of perspective. This article will use "component" to refer to a two-terminal "object" that participate in the series/parallel networks.
Bouteille de Leydethumb|Quatre bouteilles de Leyde (Musée Boerhaave, 2003). La bouteille de Leyde est l'ancêtre du condensateur. Elle fut réalisée la première fois en 1745 par Ewald von Kleist et, indépendamment de Kleist, dans la ville de Leyde (ou Leiden) aux Pays-Bas par Pieter van Musschenbroek. La première application de ce condensateur était de donner des commotions (chocs électriques ou électrisations) au public dans les foires. Par exemple, à Versailles, on présenta au roi Louis XV l'expérience de la décharge d'une grosse bouteille de Leyde à travers le circuit formé de plus de deux cents courtisans.
Théorème de NortonLe théorème de Norton pour les réseaux électriques établit que tout circuit linéaire est équivalent à une source de courant idéale , en parallèle avec une simple résistance . Le théorème s'applique à toutes les impédances, pas uniquement aux résistances. L'énoncé de ce théorème a été publié en 1926 par l'ingénieur Edward Lawry Norton (1898-1983).