En théorie relativiste, on appelle temps propre τ d'un objet le temps mesuré dans « le » référentiel de cet objet, c'est-à-dire dans un référentiel où il est immobile. En relativité restreinte, l'intervalle de temps propre séparant deux événements est l'intervalle de temps les séparant dans un référentiel inertiel où ils ont lieu au même endroit de l'espace. En mécanique newtonienne, on décrit le mouvement d'un corps, dans un espace absolu, par rapport à un temps absolu. Dans ce cadre, la position d'un mobile, mesurée par ses coordonnées spatiales (x, y, z) dans un certain repère, est donnée en fonction du temps t. La théorie de la relativité déclare qu'il n'existe pas de temps absolu, et que ce temps ne peut pas être séparé de l'espace. Elle raisonne sur des événements, chaque événement étant caractérisé par un lieu M et un instant t. Quand on suit des événements attachés à un corps libre en mouvement, on parle de ligne d'univers. Considérons un vaisseau spatial, se déplaçant librement dans l'espace, c'est-à-dire en ayant coupé tous ses moteurs (c'est donc un référentiel inertiel). Imaginons qu'il émette des éclairs à intervalles réguliers, en accord avec une horloge située dans l'habitacle (cette horloge donne ce que l'on appelle le temps propre de la fusée). Appelons cet intervalle temporel local, entre deux éclairs successifs, ainsi mesuré. Puis considérons un autre référentiel inertiel, depuis lequel d'autres observateurs voient passer devant eux la fusée, à vitesse constante. Ces observateurs auront synchronisé leurs horloges, et observeront les éclairs émis par la fusée quand elle passe devant eux, en notant l'heure. Dans ce deuxième référentiel inertiel, l'intervalle entre deux éclairs (deux événements) est caractérisé par deux nombres : la distance spatiale observée entre les deux endroits où avaient lieu les éclairs, et la distance temporelle entre eux. Une conséquence des axiomes d'Einstein, utilisable d'ailleurs comme principe pour fonder la relativité restreinte, est que l'on a l'égalité : et, bien sûr, le carré est indépendant du référentiel d'observation choisi, du fait qu'il ne dépend que de ce qui se passe dans la fusée.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (13)
PHYS-427: Relativity and cosmology I
Introduce the students to general relativity and its classical tests.
PHYS-428: Relativity and cosmology II
This course is the basic introduction to modern cosmology. It introduces students to the main concepts and formalism of cosmology, the observational status of Hot Big Bang theory and discusses major
PHYS-101(en): General physics : mechanics (English)
Students will learn the principles of mechanics to enable a better understanding of physical phenomena, such as the kinematics and dyamics of point masses and solid bodies. Students will acquire the c
Afficher plus
Publications associées (62)
Concepts associés (25)
Diagramme de Minkowski
vignette|droite|Diagramme de Minkowski représentant un événement E avec ses coordonnées d'espace-temps (x,ct) dans un référentiel R, et celles (x', ct') dans un référentiel R' en déplacement par rapport au premier à la vitesse v ; ainsi qu'un des axes du cône de lumière, en rouge. L'unité des graduations sur les axes de R' sont notées 1' sur chacun. Le diagramme de Minkowski est une représentation de l'espace-temps développée en 1908 par Hermann Minkowski, permettant une visualisation des propriétés dans la théorie de la relativité restreinte.
Dilatation du temps
Le terme dilatation du temps désigne un effet de la relativité restreinte selon lequel l'intervalle de temps entre deux événements mesurés dans un référentiel inertiel quelconque est toujours supérieur à l'intervalle de temps mesuré dans le référentiel inertiel (en mouvement relatif au premier) où ces deux événements ont la même position spatiale mais n'ont pas lieu au même moment. Étant donné que le temps est défini, dans la théorie de la relativité, par la donnée initiale d'une horloge pour chaque référentiel, on peut en déduire que pour un observateur une horloge en mouvement semble ralentie par rapport à une horloge immobile.
Espace de Minkowski
thumb|Représentation schématique de l'espace de Minkowski, qui montre seulement deux des trois dimensions spatiales. En géométrie et en relativité restreinte, l'espace de Minkowski du nom de son inventeur Hermann Minkowski, appelé aussi l'espace-temps de Minkowski ou parfois l'espace-temps de Poincaré-Minkowski, est un espace mathématique, et plus précisément un espace affine pseudo-euclidien à quatre dimensions, modélisant l'espace-temps de la relativité restreinte : les propriétés géométriques de cet espace correspondent à des propriétés physiques présentes dans cette théorie.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.