Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
En théorie relativiste, on appelle temps propre τ d'un objet le temps mesuré dans « le » référentiel de cet objet, c'est-à-dire dans un référentiel où il est immobile. En relativité restreinte, l'intervalle de temps propre séparant deux événements est l'intervalle de temps les séparant dans un référentiel inertiel où ils ont lieu au même endroit de l'espace. En mécanique newtonienne, on décrit le mouvement d'un corps, dans un espace absolu, par rapport à un temps absolu. Dans ce cadre, la position d'un mobile, mesurée par ses coordonnées spatiales (x, y, z) dans un certain repère, est donnée en fonction du temps t. La théorie de la relativité déclare qu'il n'existe pas de temps absolu, et que ce temps ne peut pas être séparé de l'espace. Elle raisonne sur des événements, chaque événement étant caractérisé par un lieu M et un instant t. Quand on suit des événements attachés à un corps libre en mouvement, on parle de ligne d'univers. Considérons un vaisseau spatial, se déplaçant librement dans l'espace, c'est-à-dire en ayant coupé tous ses moteurs (c'est donc un référentiel inertiel). Imaginons qu'il émette des éclairs à intervalles réguliers, en accord avec une horloge située dans l'habitacle (cette horloge donne ce que l'on appelle le temps propre de la fusée). Appelons cet intervalle temporel local, entre deux éclairs successifs, ainsi mesuré. Puis considérons un autre référentiel inertiel, depuis lequel d'autres observateurs voient passer devant eux la fusée, à vitesse constante. Ces observateurs auront synchronisé leurs horloges, et observeront les éclairs émis par la fusée quand elle passe devant eux, en notant l'heure. Dans ce deuxième référentiel inertiel, l'intervalle entre deux éclairs (deux événements) est caractérisé par deux nombres : la distance spatiale observée entre les deux endroits où avaient lieu les éclairs, et la distance temporelle entre eux. Une conséquence des axiomes d'Einstein, utilisable d'ailleurs comme principe pour fonder la relativité restreinte, est que l'on a l'égalité : et, bien sûr, le carré est indépendant du référentiel d'observation choisi, du fait qu'il ne dépend que de ce qui se passe dans la fusée.
Olivier Martin, Karim Achouri, Andrei Kiselev
Henrik Moodysson Rønnow, Thorbjørn Skovhus
Jian Wang, Matthias Finger, Qian Wang, Yiming Li, Matthias Wolf, Varun Sharma, Yi Zhang, Konstantin Androsov, Jan Steggemann, Leonardo Cristella, Xin Chen, Davide Di Croce, Rakesh Chawla, Matteo Galli, Anna Mascellani, João Miguel das Neves Duarte, Tagir Aushev, Lei Zhang, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Hua Zhang, Siyuan Wang, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Sun Hee Kim, Kun Shi, Wei Shi, Abhisek Datta, Jian Zhao, Federica Legger, Gabriele Grosso, Ji Hyun Kim, Donghyun Kim, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Geng Chen, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Muhammad Shoaib, Milos Dordevic, Meng Xiao, Sourav Sen, Xiao Wang, Kai Yi, Jing Li, Rajat Gupta, Zhen Liu, Muhammad Waqas, Hui Wang, Seungkyu Ha, Long Wang, Pratyush Das, Miao Hu, Anton Petrov, Xin Sun, Xin Gao, Chen Chen, Valérie Scheurer, Giovanni Mocellin, Muhammad Ansar Iqbal, Lukas Layer