Self-balancing binary search treeIn computer science, a self-balancing binary search tree (BST) is any node-based binary search tree that automatically keeps its height (maximal number of levels below the root) small in the face of arbitrary item insertions and deletions. These operations when designed for a self-balancing binary search tree, contain precautionary measures against boundlessly increasing tree height, so that these abstract data structures receive the attribute "self-balancing".
Générateur de nombres aléatoiresUn générateur de nombres aléatoires, random number generator (RNG) en anglais, est un dispositif capable de produire une suite de nombres pour lesquels il n'existe aucun lien calculable entre un nombre et ses prédécesseurs, de façon que cette séquence puisse être appelée « suite de nombres aléatoires ». Par extension, on utilise ce terme pour désigner des générateurs de nombres pseudo aléatoires, pour lesquels ce lien calculable existe, mais ne peut pas « facilement » être déduit.
BPP (complexité)En informatique théorique, plus précisément en théorie de la complexité, la classe BPP (bounded-error probabilistic polynomial time) est la classe de problèmes de décision décidés par une machine de Turing probabiliste en temps polynomial, avec une probabilité d'erreur dans la réponse inférieure à 1/3. La classe BPP est l'ensemble des problèmes, ou de façon équivalente des langages, pour lesquels il existe une machine de Turing probabiliste en temps polynomial qui satisfait les conditions d'acceptation suivantes : Si le mot n'est pas dans le langage, la machine le rejette avec une probabilité supérieure à 2/3.
NP (complexité)La classe NP est une classe très importante de la théorie de la complexité. L'abréviation NP signifie « non déterministe polynomial » (« en »). Un problème de décision est dans NP s'il est décidé par une machine de Turing non déterministe en temps polynomial par rapport à la taille de l'entrée. Intuitivement, cela revient à dire qu'on peut vérifier « rapidement » (complexité polynomiale) si une solution candidate est bien solution.
Générateur de nombres pseudo-aléatoiresUn générateur de nombres pseudo-aléatoires, pseudorandom number generator (PRNG) en anglais, est un algorithme qui génère une séquence de nombres présentant certaines propriétés du hasard. Par exemple, les nombres sont supposés être suffisamment indépendants les uns des autres, et il est potentiellement difficile de repérer des groupes de nombres qui suivent une certaine règle (comportements de groupe). Un algorithme déterministe génère des suites de nombres qui ne peuvent pas satisfaire complètement les critères mathématiques qualifiant les suites aléatoires.
Algorithme de Monte-CarloEn algorithmique, un algorithme de Monte-Carlo est un algorithme randomisé dont le temps d'exécution est déterministe, mais dont le résultat peut être incorrect avec une certaine probabilité (généralement minime). Autrement dit un algorithme de Monte-Carlo est un algorithme qui utilise une source de hasard, dont le temps de calcul est connu dès le départ (pas de surprise sur la durée du calcul), cependant dont la sortie peut ne pas être la réponse au problème posé, mais c'est un cas très rare.
Nondeterministic algorithmIn computer programming, a nondeterministic algorithm is an algorithm that, even for the same input, can exhibit different behaviors on different runs, as opposed to a deterministic algorithm. There are several ways an algorithm may behave differently from run to run. A concurrent algorithm can perform differently on different runs due to a race condition. A probabilistic algorithm's behaviors depends on a random number generator.
Cryptographically secure pseudorandom number generatorA cryptographically secure pseudorandom number generator (CSPRNG) or cryptographic pseudorandom number generator (CPRNG) is a pseudorandom number generator (PRNG) with properties that make it suitable for use in cryptography. It is also loosely known as a cryptographic random number generator (CRNG). Most cryptographic applications require random numbers, for example: key generation nonces salts in certain signature schemes, including ECDSA, RSASSA-PSS The "quality" of the randomness required for these applications varies.
Algorithme de Las VegasEn informatique, un algorithme de Las Vegas est un type d'algorithme probabiliste qui donne toujours un résultat correct ; son caractère aléatoire lui donne de meilleures performances temporelles en moyenne. Comme le suggère David Harel dans son livre d'algorithmique, ainsi que Motvani et Raghavan, le tri rapide randomisé est un exemple paradigmatique d'algorithme de Las Vegas.
Filtre de BloomEn informatique, et plus précisément en algorithmique, un filtre de Bloom est une structure de données inventée par Burton Howard Bloom en 1970. C'est une implémentation du type abstrait Ensemble. Cette structure est probabiliste, c'est-à-dire qu'elle utilise des probabilités, et que sa correction est probabiliste. Plus précisément, lors du test de la présence d'un élément dans un ensemble, un filtre de Bloom permet de savoir : avec certitude l'absence d'un élément (il ne peut pas y avoir de faux négatif) ; avec une certaine probabilité la présence d'un élément (il peut y avoir des faux positifs).