Longueur de description minimaleLa longueur de description minimale ou LDM (MDL pour Minimum Description Length en anglais) est un concept inventé par Jorma Rissanen en 1978 et utilisé en théorie de l'information et en compression de données. Le principe est basé sur l'affirmation suivante : toute régularité dans un ensemble de données peut être utilisée afin de compresser l'information, c'est-à-dire l'exprimer à l'aide d'un nombre réduit de symboles. Théorie de l'information Jorma Rissanen, « Modeling by shortest data description », Automatica, vol 14, No 5, pp.
Posterior predictive distributionIn Bayesian statistics, the posterior predictive distribution is the distribution of possible unobserved values conditional on the observed values. Given a set of N i.i.d. observations , a new value will be drawn from a distribution that depends on a parameter , where is the parameter space. It may seem tempting to plug in a single best estimate for , but this ignores uncertainty about , and because a source of uncertainty is ignored, the predictive distribution will be too narrow.
Théorie de l'informationLa théorie de l'information, sans précision, est le nom usuel désignant la théorie de l'information de Shannon, qui est une théorie utilisant les probabilités pour quantifier le contenu moyen en information d'un ensemble de messages, dont le codage informatique satisfait une distribution statistique que l'on pense connaître. Ce domaine trouve son origine scientifique avec Claude Shannon qui en est le père fondateur avec son article A Mathematical Theory of Communication publié en 1948.
Cote (probabilités)Dans les jeux de hasard et des statistiques, la cote d'un événement (odds en anglais) est le ratio entre la probabilité que l'événement se produise et la probabilité qu'il ne se produise pas. On l'exprime souvent comme une paire de nombres où le dénominateur de la cote est ramené à 1. En particulier dans les paris et les jeux d'argent, la cote exprime le gain espéré dans le cas où l'événement sur lequel on a misé se réalise ; par exemple, une « cote de 4 contre 1 » traduit le fait qu'on gagnerait 4 fois sa mise.
Precision (statistics)In statistics, the precision matrix or concentration matrix is the matrix inverse of the covariance matrix or dispersion matrix, . For univariate distributions, the precision matrix degenerates into a scalar precision, defined as the reciprocal of the variance, . Other summary statistics of statistical dispersion also called precision (or imprecision) include the reciprocal of the standard deviation, ; the standard deviation itself and the relative standard deviation; as well as the standard error and the confidence interval (or its half-width, the margin of error).
Probabilité algorithmiqueEn théorie algorithmique de l'information, la probabilité algorithmique, aussi connue comme probabilité de Solomonoff, est une méthode permettant d’assigner une probabilité à une observation donnée. Il a été inventé par Ray Solomonoff dans les années 1960. Elle est utilisée dans la théorie de l'inférence inductive et dans l'analyse des algorithmes. En particulier, dans sa thèorie de l'induction, Solomonoff utilise une telle formulation pour exprimer la probabilité a priori dans la formule de Bayes.
Solomonoff's theory of inductive inferenceSolomonoff's theory of inductive inference is a mathematical theory of induction introduced by Ray Solomonoff, based on probability theory and theoretical computer science. In essence, Solomonoff's induction derives the posterior probability of any computable theory, given a sequence of observed data. This posterior probability is derived from Bayes' rule and some universal prior, that is, a prior that assigns a positive probability to any computable theory.
Sampling distributionIn statistics, a sampling distribution or finite-sample distribution is the probability distribution of a given random-sample-based statistic. If an arbitrarily large number of samples, each involving multiple observations (data points), were separately used in order to compute one value of a statistic (such as, for example, the sample mean or sample variance) for each sample, then the sampling distribution is the probability distribution of the values that the statistic takes on.
ParameterA parameter (), generally, is any characteristic that can help in defining or classifying a particular system (meaning an event, project, object, situation, etc.). That is, a parameter is an element of a system that is useful, or critical, when identifying the system, or when evaluating its performance, status, condition, etc. Parameter has more specific meanings within various disciplines, including mathematics, computer programming, engineering, statistics, logic, linguistics, and electronic musical composition.
Interval estimationIn statistics, interval estimation is the use of sample data to estimate an interval of possible values of a parameter of interest. This is in contrast to point estimation, which gives a single value. The most prevalent forms of interval estimation are confidence intervals (a frequentist method) and credible intervals (a Bayesian method); less common forms include likelihood intervals and fiducial intervals.