Tris, or tris(hydroxymethyl)aminomethane, or known during medical use as tromethamine or THAM, is an organic compound with the formula (HOCH2)3CNH2, one of the twenty Good's buffers. It is extensively used in biochemistry and molecular biology as a component of buffer solutions such as in TAE and TBE buffers, especially for solutions of nucleic acids. It contains a primary amine and thus undergoes the reactions associated with typical amines, e.g., condensations with aldehydes. Tris also complexes with metal ions in solution. In medicine, tromethamine is occasionally used as a drug, given in intensive care for its properties as a buffer for the treatment of severe metabolic acidosis in specific circumstances. Some medications are formulated as the "tromethamine salt" including Hemabate (carboprost as trometamol salt), and "ketorolac trometamol". While Good's buffers should be inert, in 2023 a strain of Pseudomonas hunanensis was found to be able to degrade TRIS buffer. The conjugate acid of tris has a pKa of 8.07 at 25 °C, which implies that the buffer has an effective pH range between 7.1 and 9.1 (pKa ± 1) at room temperature. In general, as temperature decreases from 25 °C to 5 °C the pH of a tris buffer will increase an average of 0.03 units per degree. As temperature rises from 25 °C to 37 °C, the pH of a tris buffer will decrease an average of 0.025 units per degree. In general, a 10-fold increase in tris buffer concentration will lead to a 0.05 unit increase in pH and vice versa. Silver-containing single-junction pH electrodes (e.g., silver chloride electrodes) are incompatible with tris since an Ag-tris precipitate forms which clogs the junction. Double-junction electrodes are resistant to this problem, and non-silver containing electrodes are immune. Tris inhibits a number of enzymes, and therefore should be used with care when studying proteins. Tris can also inhibit enzyme activity via chelation of metal ions. Tris is prepared industrially by the exhaustive condensation of nitromethane with formaldehyde under basic conditions (i.