En mathématiques, les nombres de Bernoulli, notés B (ou parfois b pour ne pas les confondre avec les polynômes de Bernoulli ou avec les nombres de Bell), constituent une suite de nombres rationnels. Ces nombres ont d'abord été étudiés par Jacques Bernoulli (ce qui a conduit Abraham de Moivre à leur donner le nom que nous connaissons aujourd'hui) en cherchant des formules pour exprimer les sommes du type Pour des valeurs entières de m, cette somme s'écrit comme un polynôme de la variable n dont les premiers termes sont : Les premiers nombres de Bernoulli sont donnés par la table suivante : On peut les définir par l'intermédiaire du développement en série entière (convergent si x < 2π) : Les nombres de Bernoulli apparaissent dans de très nombreuses applications, depuis la formule d'Euler-Maclaurin : ou les sommes définissant la fonction zêta de Riemann, dues à Leonhard Euler : jusqu'à l'approche par Kummer du dernier théorème de Fermat. thumb|Jakob Bernoulli, Summae Potestatum, extrait de Ars Conjectandi, 1713. Les nombres A = 1/6, B = –1/30, C = 1/42, D = – 1/30, ... apparaissent dans Ars Conjectandi de Bernoulli, 1713, . Les nombres de Bernoulli avec au lieu de sont la transformée binomiale des premiers et s'obtiennent à partir des nombres de Worpitzky ou, ce qui est équivalent, en appliquant l'algorithme d'Akiyama-Tanigawa à 1/(n+1). À la suite de l'article « The Bernoulli Manifesto » de Peter Luschny, Donald Knuth a adopté la valeur , aussi dans les récentes réimpressions du livre Concrete Mathematics ; Knuth présente les nouvelles versions dans un texte à part. Les nombres de Bernoulli ont été découverts à peu près en même temps et indépendamment par le mathématicien suisse Jacques Bernoulli, dont ils portent le nom, et par le mathématicien japonais Seki Takakazu. La découverte de Seki a été publiée à titre posthume en 1712 dans son ouvrage Katsuyō Sanpō ; celle de Bernoulli, également à titre posthume, dans son Ars Conjectandi publié en 1713.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (3)
ME-201: Continuum mechanics
Continuum conservation laws (e.g. mass, momentum and energy) will be introduced. Mathematical tools, including basic algebra and calculus of vectors and Cartesian tensors will be taught. Stress and de
MATH-101(de): Analysis I (German)
Es werden die Grundlagen der Analysis sowie der Differential- und Integralrechnung von Funktionen einer reellen Veränderlichen erarbeitet.
PHYS-441: Statistical physics of biomacromolecules
Introduction to the application of the notions and methods of theoretical physics to problems in biology.
Séances de cours associées (33)
Élasticité en mécanique : Rods, boucle et transfert de chaleur
Couvre les barres continuelles, l'élasticité, les tiges, le transfert de chaleur et l'analyse structurale.
Dérivabilité sur un intervalle : Théorème de Rolle
Couvre la dérivation sur un intervalle, y compris le théorème de Rolle et les applications pratiques dans l'analyse des fonctions.
Modèles stochastiques pour les communications
Couvre les modèles stochastiques de communication, se concentrant sur les variables aléatoires, les chaînes Markov, les processus Poisson et les calculs de probabilité.
Afficher plus
Publications associées (20)

Double Quasi-Poisson Algebras are Pre-Calabi-Yau

David Fernandez

In this article, we prove that double quasi-Poisson algebras, which are noncommutative analogues of quasi-Poisson manifolds, naturally give rise to pre-Calabi-Yau algebras. This extends one of the main results in [11], where a correspondence between certai ...
2022

Safety in Numbers: Asymptotic Analysis of a Monitoring Problem

Emre Telatar, Reka Inovan

In this work, we introduce a setup where a monitoring entity attempts to distinguish a cheating player among a group of regular players where all players behave in order to maximize their reward. We assume that the cheating player has an "information advan ...
IEEE2022

Efficient learning of smooth probability functions from Bernoulli tests with guarantees.

Volkan Cevher, Paul Thierry Yves Rolland, Ali Kavis

We study the fundamental problem of learning an unknown, smooth probability function via pointwise Bernoulli tests. We provide a scalable algorithm for efficiently solving this problem with rigorous guarantees. In particular, we prove the convergence rate ...
2019
Afficher plus
Personnes associées (1)
Concepts associés (25)
Fonction zêta de Riemann
vignette|upright=2|La fonction zêta de Riemann ζ(s) dans le plan complexe. La couleur d'un point s code la valeur de ζ(s) : des couleurs vives indiquent des valeurs proches de 0 et la nuance indique l'argument de la valeur. Le point blanc pour s = 1 est le pôle ; les points noirs sur l'axe réel négatif (demi-droite horizontale) et sur la droite critique Re(s) = 1/2 (droite verticale) sont les zéros. vignette|upright=2|Carte des couleurs utilisées dans la figure du dessus.
Série génératrice
En mathématiques, et notamment en analyse et en combinatoire, une série génératrice (appelée autrefois fonction génératrice, terminologie encore utilisée en particulier dans le contexte de la théorie des probabilités) est une série formelle dont les coefficients codent une suite de nombres (ou plus généralement de polynômes) ; on dit que la série est associée à la suite. Ces séries furent introduites par Abraham de Moivre en 1730, pour obtenir des formules explicites pour des suites définies par récurrence linéaire.
Ada Lovelace
Ada Lovelace, de son nom complet Augusta Ada King, comtesse de Lovelace, née Ada Byron le à Londres et morte le à Marylebone dans la même ville, est une pionnière de la science informatique. Elle est principalement connue pour avoir réalisé le premier véritable programme informatique, lors de son travail sur un ancêtre de l'ordinateur : la machine analytique de Charles Babbage. Dans ses notes, on trouve en effet le premier programme publié, destiné à être exécuté par une machine, ce qui fait d'Ada Lovelace la première personne à avoir programmé au monde.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.