Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore des modèles générateurs pour la prévision de trajectoires dans les véhicules autonomes, y compris des modèles discriminatifs vs générateurs, VAES, GANS, et des études de cas.
Explique le regroupement des moyennes k, en attribuant des points de données à des grappes en fonction de la proximité et en minimisant les distances carrées à l'intérieur des grappes.
Explore l'apprentissage par machine contradictoire, les réseaux d'adversaires génériques et les défis des exemples d'adversaires dans l'optimisation des données.
Déplacez-vous dans des modèles générateurs basés sur les scores, explorant les distributions naturelles d'apprentissage et l'impact de l'architecture de réseau neuronal sur la robustesse.
Couvre la théorie et les applications de l'apprentissage machine contradictoire, en mettant l'accent sur l'optimisation minmax et la robustesse à des exemples contradictoires.