Horst VogelHorst Vogel est né en 1948 à Würzburg, Allemagne. Après ses études en chimie, il obtient le diplôme de chimie en 1974 de l'Université de Würzburg.Il entreprend ensuite un travail de doctorat au Max-Planck Institut für Biophysikalische Chemie de Göttingen, et obtient en 1978 le grade de docteur ès sciences de l'Université de Göttingen. De 1978 à 1983 il effectue des recherches au Max-Planck Institut für Biologie à Tübingen et en 1984, il rejoint le Biocentre à Bâle où il travaille jusqu'en 1989, effectuant une année au Karolinska Institute à Stockholm. En 1989, Horst Vogel rejoint l'institut de chimie physique de l'EPFL où il dirige un groupe travaillant dans les domaines de la biophysique et de la bioélectronique.
Depuis le 1er octobre 1994 il est profeseur en chimie physique des polymères et membranes au Département de chimie de EPFL. Ses intérêts de recherche sont l'étude de la structure et de la dynamique de récepteurs membranaires et l'auto-assemblage des biomolécules aux interfaces pour développer de nouveaux biocapteurs dans le domaine de micro- et nanotechnologie. Il enseigne les sciences du vivant, la biophysique et biochimie, et des chapitres concernant la biotechnologie.
Dipl. in Chemistry1974-Univ. Würzburg, DE
Ph.D.-1978-MPI für Biophys. Chemie, Göttingen, DE
Johan AuwerxJohan Auwerx is Professor at the École Polytechnique Fédérale in Lausanne, Switzerland, where he occupies the Nestle Chair in Energy Metabolism. Dr. Auwerx has been using molecular physiology and systems genetics to understand metabolism in health, aging and disease. Much of his work focused on understanding how diet, exercise and hormones control metabolism through changing the expression of genes by altering the activity of transcription factors and their associated cofactors. His work was instrumental for the development of agonists of nuclear receptors - a particular class of transcription factors - into drugs, which now are used to treat high blood lipid levels, fatty liver, and type 2 diabetes. Dr. Auwerx was amongst the first to recognize that transcriptional cofactors, which fine-tune the activity of transcription factors, act as energy sensors/effectors that influence metabolic homeostasis. His research validated these cofactors as novel targets to treat metabolic diseases, and spurred the clinical use of natural compounds, such as resveratrol, as modulators of these cofactor pathways.
Johan Auwerx was elected as a member of EMBO in 2003 and is the recipient of a dozen of international scientific prizes, including the Danone International Nutrition Award, the Oskar Minkowski Prize, and the Morgagni Gold Medal. His work is highly cited by his peers with a h-factor of over 100. He is an editorial board member of several journals, including Cell Metabolism, Molecular Systems Biology, The EMBO Journal, Journal of Cell Biology, Cell, and Science. Dr. Auwerx co-founded a handful of biotech companies, including Carex, PhytoDia, and most recently Mitobridge, and has served on several scientific advisory boards.
Dr. Auwerx received both his MD and PhD in Molecular Endocrinology at the Katholieke Universiteit in Leuven, Belgium. He was a post-doctoral research fellow in the Departments of Medicine and Genetics of the University of Washington in Seattle.
Pierre MagistrettiPierre J. Magistretti is an internationally-recognized neuroscientist who has made significant contributions in the field of brain energy metabolism. His group has discovered some of the cellular and molecular mechanisms that underlie the coupling between neuronal activity and energy consumption by the brain.
This work has considerable ramifications for the understanding of the origin of the signals detected with the current functional brain imaging techniques used in neurological and psychiatric research (see for example Magistretti et al, Science, 283: 496 497, 1999). He is the author of over 100 articles published in peer-reviewed journals.
He has given over 80 invited lectures at international meetings or at universities in Europe and North America, including the 2000 Talairach Lecture at the Functional Mapping of the Human Brain Conference. In November 2000 he has been a Mc Donnel Visiting Scholar at Washington University School of Medicine.
Pierre J. Magistretti is the President-Elect (2002 2004) of the Federation of European Neuroscience Societies (FENS) which has a membership of over 15000 European neuroscientists. He has been first president of the Swiss Society for Neuroscience (1997-1999) and the first Chairman of the Department of Neurosciences of the University of Lausanne (1996 1998).
Pierre J. Magistretti is Professor of Physiology (since 1988) at the University of Lausanne Medical School. He has been Vice-Dean of the University of Lausanne Medical School from 1996 to 2000. Pierre Magistretti, is Director of the Brain Mind Institute at EPFL and Director of the Center for Psychiatric Neuroscience of the University of Lausanne and CHUV. He is also Director of the NCCR SYNAPSY "the synaptic bases of mental diseases".
POSITIONS AND HONORS
MAIN POSITION HELD
1988-2004 Professor of Physiology, University of Lausanne Medical School
1996-2000 Vice-Dean for Preclinical Departments, University of Lausanne Medical School
2001-2004 Chairman, Department of Physiology, University of Lausanne Medical School
2004-present Professor and Director, Center for Psychiatric Neuroscience, Department of Psychiatry, University of Lausanne Medical School and Hospitals (UNIL-CHUV) (Joint appointment with EPFL)
2005-2008 Professor and Co-Director, Brain Mind Institute, Federal Institute of Technology (EPFL), Lausanne (Joint appointment with UNIL-CHUV)
2007-present Chairman of the Scientific Advisory Board of Centre dImagerie Biomédicale (CIBM), an Imaging Consortium of the Universities, University Hospitals of Lausanne and Geneva and of Ecole Polytechnique Fédérale de Lausanne
2008-present Professor and Director, Brain Mind Institute, Federal Institute of Technology (EPFL), Lausanne Joint appointment with UNIL-CHUV)
2010-present Director, National Center for Competence in Research (NCCR)
The synaptic bases of mental diseases of the Swiss National Science Foundation
2010-present Secretary General, International Brain Research Organization (IBRO)
MAIN HONORS AND AWARDS
1997 Recipient of the Theodore-Ott Prize of the Swiss Academy of Medical Sciences
2001 Elected Member of Academia Europaea
2001 Elected Member of the Swiss Academy of Medical Sciences, ad personam
2002 Recipient of the Emil Kraepelin Guest Professorship, Max Planck Institute für Psychiatry, Münich
2006 Elected Professor at Collège de France, Paris, International Chair 2007-2008
2009 Goethe Award for Psychoanalytic Scholarship, Canadian Psychological Association
2011 Camillo Golgi Medal Award, Golgi Fondation
2011 Elected Member of the American College of NeuroPsychopharmacology (ACNP)
Carl PetersenCarl Petersen studied physics as a bachelor student in Oxford (1989-1992). During his PhD studies under the supervision of Prof. Sir Michael Berridge in Cambridge (1992-1996), he investigated cellular and molecular mechanisms of calcium signalling. In his first postdoctoral period (1996-1998), he joined the laboratory of Prof. Roger Nicoll at the University of California San Francisco (UCSF) to investigate synaptic transmission and plasticity in the hippocampus. During a second postdoctoral period, in the laboratory of Prof. Bert Sakmann at the Max Planck Institute for Medical Research in Heidelberg (1999-2003), he began working on the primary somatosensory barrel cortex, investigating cortical circuits and sensory processing. Carl Petersen joined the Brain Mind Institute of the Faculty of Life Sciences at the Ecole Polytechnique Federale de Lausanne (EPFL) in 2003, setting up the Laboratory of Sensory Processing to investigate the functional operation of neuronal circuits in awake mice during quantified behavior. In 2019, Carl Petersen became the Director of the EPFL Brain Mind Institute, with the goal to promote quantitative multidisciplinary research into neural structure, function, dysfunction, computation and therapy through technological advances.
Gerardo TurcattiSenior scientific level (R&D) with extensive experience in the management of multidisciplinary technological projects. Prof. Gerardo Turcatti, directs the academic technological platform, Biomolecular Screening Facility (BSF) at the EPFL he created in 2006. In the framework of the NCCR-Chemical Biology, he is project leader of the program ACCESS (An Academic Chemical Screening Platform for Switzerland). Previously he co-founded and acted as CTO of Manteia S.A., a Swiss-based company that developed high throughput DNA sequencing technologies currently owned by Illumina and used in the ‘Next Generation Sequencing’ instruments. Prior to this experience, Prof. Turcatti had a long multidisciplinary career in R&D divisions of Biotechnology and Pharmaceutical companies with extensive expertise in several Chemical Biology-related disciplines such as Drug Screening, Chemical Biology, Bio-analytical Chemistry, DNA and Protein Chemistry. Prof. Turcatti earned his Master in Chemical Engineering at the University of Geneva and his PhD in Chemistry and Biochemistry from the EPFL where he received the award for the best doctoral thesis of the year.
Patrick Daniel BarthProfessor Patrick Barth is Associate Professor at EPFL and Adjunct Associate Professor at Baylor College of Medicine, Houston, TX, USA. He received training in Physics, Chemistry and Biology (University of Paris, ENS) in France and performed his PhD at the Commissiariat a l'Energie Atomique in Saclay, France on structure/function studies of membrane proteins (photosystem I) using biochemical and biophysical experimental techniques. He carried out postdoctoral studies at University of California at Berkeley with Tom Alber on computational development for calculating protein electrostatics and designing de novo selective peptide inhibitors of cellular protein interactions. He then went to the University of Washington as a postdoctoral fellow and instructor in David Baker's laboratory to develop computational techniques in the software Rosetta for predicting and designing membrane protein structures. He started his independent career and received tenure at Baylor College of Medicine. He will continue at EPFL to marry computation and experiment for understanding the molecular determinants of signal transduction, as well as modeling and designing membrane proteins with novel functions for various synthetic biology and therapeutic applications.