Cours associés (9)
MATH-492: Representation theory of semisimple lie algebras
We will establish the major results in the representation theory of semisimple Lie algebras over the field of complex numbers, and that of the related algebraic groups.
MATH-319: Lie Algebras
On introduit les algèbres de Lie semisimples de dimension finie sur les nombres complexes et démontre le théorème de classification de celles-ci.
MATH-314: Representation theory I - finite groups
This is a standard course in representation theory of finite groups.
MATH-429: Representation Theory II - Lie groups and algebras
This is a standard course on Lie groups, Lie algebras and their representations.
MATH-335: Coxeter groups
Study groups generated by reflections
MATH-417: Number theory II.b - selected topics
This year's topic is "Additive combinatorics and applications." We will introduce various methods from additive combinatorics, establish the sum-product theorem over finite fields and derive various a
MATH-686: Introduction to geometric representation theory
This course presents geometric constructions of irreducible representations of semi-simple Lie Algebras and their Weyl groups by means of Springer theory.
MATH-680: Monstrous moonshine
The monstrous moonshine is an unexpected connection between the Monster group and modular functions. In the course we will explain the statement of the conjecture and study the main ideas and concepts
MATH-495: Mathematical quantum mechanics
Quantum mechanics is one of the most successful physical theories. This course presents the mathematical formalism (functional analysis and spectral theory) that underlies quantum mechanics. It is sim

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.