The frequency of exceedance, sometimes called the annual rate of exceedance, is the frequency with which a random process exceeds some critical value. Typically, the critical value is far from the mean. It is usually defined in terms of the number of peaks of the random process that are outside the boundary. It has applications related to predicting extreme events, such as major earthquakes and floods.
The frequency of exceedance is the number of times a stochastic process exceeds some critical value, usually a critical value far from the process' mean, per unit time. Counting exceedance of the critical value can be accomplished either by counting peaks of the process that exceed the critical value or by counting upcrossings of the critical value, where an upcrossing is an event where the instantaneous value of the process crosses the critical value with positive slope. This article assumes the two methods of counting exceedance are equivalent and that the process has one upcrossing and one peak per exceedance. However, processes, especially continuous processes with high frequency components to their power spectral densities, may have multiple upcrossings or multiple peaks in rapid succession before the process reverts to its mean.
Consider a scalar, zero-mean Gaussian process y(t) with variance σy2 and power spectral density Φy(f), where f is a frequency. Over time, this Gaussian process has peaks that exceed some critical value ymax > 0. Counting the number of upcrossings of ymax, the frequency of exceedance of ymax is given by
N0 is the frequency of upcrossings of 0 and is related to the power spectral density as
For a Gaussian process, the approximation that the number of peaks above the critical value and the number of upcrossings of the critical value are the same is good for ymax/σy > 2 and for narrow band noise.
For power spectral densities that decay less steeply than f−3 as f→∞, the integral in the numerator of N0 does not converge. Hoblit gives methods for approximating N0 in such cases with applications aimed at continuous gusts.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Couvre la gestion des plaines inondables, les mesures de lutte contre les inondations, l'analyse hydrologique et les stratégies d'optimisation des réservoirs.
Explore les théorèmes de limite extrême et l'analyse statistique pour l'analyse d'événements extrêmes comme les précipitations du Venezuela et les données de Venise.
La période de retour, ou temps de retour, est la durée moyenne au cours de laquelle, statistiquement un événement d’une même intensité se reproduit. Ce terme est très utilisé pour caractériser les risques naturels comme les tremblements de terre, la crue ou l'inondation, la tempête, l'orage, etc., selon le paramètre d'intensité correspondant adéquat magnitude d'un séisme, débit (ou épaisseur de lame d'eau) d'un cours d'eau, vitesse du vent, quantité de pluie, etc.
Une loi exponentielle modélise la durée de vie d'un phénomène sans mémoire, ou sans vieillissement, ou sans usure : la probabilité que le phénomène dure au moins s + t heures (ou n'importe quelle autre unité de temps) sachant qu'il a déjà duré t heures sera la même que la probabilité de durer s heures à partir de sa mise en fonction initiale. En d'autres termes, le fait que le phénomène ait duré pendant t heures ne change rien à son espérance de vie à partir du temps t.
Extreme value theory provides an asymptotically justified framework for estimation of exceedance probabilities in regions where few or no observations are available. For multivariate tail estimation, the strength of extremal dependence is crucial and it is ...
Institute of Mathematical Statistics2017
, ,
Sediment transport in overland flow interacts dynamically with the soil surface morphology, which is often assumed to be static. This assumption, although it limits the predictive capacity of models, is reasonable since the morphological evolution is diffi ...
2015
, , ,
The scaling relation between the drainage area and stream length (Hack’s law), along with exceedance probabilities of drainage area, discharge and upstream flow network length are well known for channelized fluvial regions. We report here on a laboratory e ...