Antiprisme pentagonalEn géométrie, l'antiprisme pentagonal est le troisième solide de l'ensemble infini des antiprismes. Celui-ci peuvent être regardé comme un prisme pentagonal dont on a opéré une fraction de tour sur une des deux faces supérieure ou inférieure pour faire coïncider un sommet avec le milieu de l'arête correspondante. Ce qui a pour résultat une suite de triangles en nombre pair sur les côtés, et deux faces pentagonales supérieure et inférieure. Si toutes ses faces sont régulières, c'est un polyèdre semi-régulier.
BicoupoleEn géométrie, une bicoupole est un solide formé en connectant deux coupoles par leurs bases. Il existe deux classes de bicoupoles parce que chaque moitié de coupole est bordée par une alternance de triangles et de carrés. Si les faces identiques sont placées ensemble, le résultat est une orthobicoupole. Si les faces sont différentes, c'est une gyrobicoupole. Les coupoles et les bicoupoles existent en tant qu'ensembles infinis de polyèdres, comme les pyramides, les bipyramides, les prismes, les antiprismes et les trapèzoèdres.
Polyèdre isoédriquevignette| Un jeu de dés isoédriques En géométrie, un polytope de dimension 3 (un polyèdre) ou plus est dit isoédrique lorsque ses faces sont identiques. Plus précisément, toutes les faces ne doivent pas être simplement isométriques, mais doivent être transitives, c'est-à-dire qu'elles doivent se trouver dans la même orbite de symétrie. En d'autres termes, pour toutes les faces A et B, il doit y avoir une symétrie de l'ensemble du solide par rotations et réflexions qui envoie A sur B.
Truncation (geometry)In geometry, a truncation is an operation in any dimension that cuts polytope vertices, creating a new facet in place of each vertex. The term originates from Kepler's names for the Archimedean solids. In general any polyhedron (or polytope) can also be truncated with a degree of freedom as to how deep the cut is, as shown in Conway polyhedron notation truncation operation. A special kind of truncation, usually implied, is a uniform truncation, a truncation operator applied to a regular polyhedron (or regular polytope) which creates a resulting uniform polyhedron (uniform polytope) with equal edge lengths.
Antiprisme carré adouciEn géométrie, l'antiprisme carré adouci est un des solides de Johnson (J85). C'est un des solides de Johnson élémentaires qui n'apparaît pas à partir de manipulation en "copier/coller" de solides de Platon et de solides d'Archimède. Il peut être conçu comme un antiprisme carré avec une chaîne de triangles insérés autour du milieu. Un effet similaire peut être réalisé avec un antiprisme triangulaire (un octaèdre), ce qui donne un icosaèdre. Les 92 solides de Johnson ont été nommés et décrits par Norman Johnson en 1966.
Pavage carré tronquéIn geometry, the truncated square tiling is a semiregular tiling by regular polygons of the Euclidean plane with one square and two octagons on each vertex. This is the only edge-to-edge tiling by regular convex polygons which contains an octagon. It has Schläfli symbol of t{4,4}. Conway calls it a truncated quadrille, constructed as a truncation operation applied to a square tiling (quadrille). Other names used for this pattern include Mediterranean tiling and octagonal tiling, which is often represented by smaller squares, and nonregular octagons which alternate long and short edges.
Polyèdre sphériquevignette| Icosaèdre tronqué et ballon de football. Un polyèdre sphérique est constitué par un certain nombre d'arcs de grand cercle d'une même sphère (les arêtes) dont les extrémités (les sommets) sont communes à plusieurs arêtes ; les portions de sphère délimitées par les arêtes sont les faces. Autrement dit, un polyèdre sphérique est un pavage de la sphère par des polygones sphériques. Par abus de langage on appelle aussi polyèdre sphérique un polyèdre réalisant une approximation de la sphère, comme le dodécaèdre régulier, l'icosaèdre régulier ou l'icosaèdre tronqué.
Cantellation (geometry)In geometry, a cantellation is a 2nd-order truncation in any dimension that bevels a regular polytope at its edges and at its vertices, creating a new facet in place of each edge and of each vertex. Cantellation also applies to regular tilings and honeycombs. Cantellating a polyhedron is also rectifying its rectification. Cantellation (for polyhedra and tilings) is also called expansion by Alicia Boole Stott: it corresponds to moving the faces of the regular form away from the center, and filling in a new face in the gap for each opened edge and for each opened vertex.
HexakioctaèdreUn hexakioctaèdre est un solide de Catalan et le dual d'un solide d'Archimède, le grand rhombicuboctaèdre. Comme tel, il est de faces uniformes mais avec des faces polygonales irrégulières. Il ressemble un peu à un dodécaèdre rhombique gonflé : si on remplace chaque face d'un dodécaèdre rhombique avec un sommet unique et quatre triangles d'une manière régulière, on a pour résultat un hexakioctaèdre. L'hexaki icosaèdre Robert Williams, The Geometrical Foundation of Natural Structure: A Source Book of Design, 1979, Disdyakis Dodecahedron - MathWorld.
Pavage triangulaireIn geometry, the triangular tiling or triangular tessellation is one of the three regular tilings of the Euclidean plane, and is the only such tiling where the constituent shapes are not parallelogons. Because the internal angle of the equilateral triangle is 60 degrees, six triangles at a point occupy a full 360 degrees. The triangular tiling has Schläfli symbol of {3,6}. English mathematician John Conway called it a deltille, named from the triangular shape of the Greek letter delta (Δ).