ZonoèdreUn zonoèdre est un polyèdre convexe où chaque face est un polygone ayant un centre de symétrie. Tout zonoèdre peut être décrit de manière équivalente comme la somme de Minkowski d'un ensemble de segments de droite dans un espace tridimensionnel, ou comme la projection tridimensionnelle d'un hypercube. Les zonoèdres ont été définis à l'origine et étudiés par Evgraf Fedorov, un cristallographe russe. La motivation originale pour l'étude des zonoèdres réside dans le fait que le diagramme de Voronoï d'un réseau quelconque forme un dans lequel les cellules sont des zonoèdres.
Solide de Catalanthumb|Un dodécaèdre rhombique En mathématiques, un solide de Catalan ou dual archimédien, est un polyèdre dual d'un solide d'Archimède. Les solides de Catalan ont été nommés ainsi en l'honneur du mathématicien belge Eugène Catalan qui, en 1865, fut le premier à les étudier de manière systématique et les décrire et représenter avec soin et minutie. Les solides de Catalan sont tous convexes. Ils sont de faces uniformes mais non de sommets uniformes, en raison du fait que les duaux archimédiens sont de sommets uniformes et non de faces uniformes.
Goldberg polyhedronIn mathematics, and more specifically in polyhedral combinatorics, a Goldberg polyhedron is a convex polyhedron made from hexagons and pentagons. They were first described in 1937 by Michael Goldberg (1902–1990). They are defined by three properties: each face is either a pentagon or hexagon, exactly three faces meet at each vertex, and they have rotational icosahedral symmetry. They are not necessarily mirror-symmetric; e.g. GP(5,3) and GP(3,5) are enantiomorphs of each other.
Rectification (geometry)In Euclidean geometry, rectification, also known as critical truncation or complete-truncation, is the process of truncating a polytope by marking the midpoints of all its edges, and cutting off its vertices at those points. The resulting polytope will be bounded by vertex figure facets and the rectified facets of the original polytope. A rectification operator is sometimes denoted by the letter r with a Schläfli symbol. For example, r{4,3} is the rectified cube, also called a cuboctahedron, and also represented as .
Cuboctaèdre tronquéthumb|Patron (géométrie) Le grand rhombicuboctaèdre est un solide d'Archimède. Il possède 12 faces carrées régulières, 8 faces hexagonales régulières et 6 faces octogonales régulières. Ainsi que 48 sommets et 72 arêtes. Puisque chacune de ses faces possède un centre de symétrie (ou de manière équivalente, une rotation à 180°), le cuboctaèdre tronqué est un zonoèdre (à neuf générateurs). On peut rencontrer d'autres noms tels que : Grand cuboctaèdre Cuboctaèdre rhombitronqué Cuboctaèdre omnitronqué Le nom cuboctaèdre tronqué, donné à l'origine par Johannes Kepler est un peu inexact.
Dodécaèdre rhombiqueEn géométrie, le dodécaèdre rhombique (aussi appelé granatoèdre) est un polyèdre convexe à 12 faces rhombiques identiques. Solide de Catalan, zonoèdre, il est le dual du cuboctaèdre. Pour le différencier du dodécaèdre de Bilinski, autre dodécaèdre rhombique à 12 faces identiques, on précise parfois dodécaèdre rhombique de première espèce. La grande diagonale de chaque face vaut exactement √2 fois la longueur de la petite diagonale, ainsi, les angles aigus de chaque face mesurent 2 tan(1/√2), ou approximativement 70,53°.
List of Euclidean uniform tilingsThis table shows the 11 convex uniform tilings (regular and semiregular) of the Euclidean plane, and their dual tilings. There are three regular and eight semiregular tilings in the plane. The semiregular tilings form new tilings from their duals, each made from one type of irregular face. John Conway called these uniform duals Catalan tilings, in parallel to the Catalan solid polyhedra. Uniform tilings are listed by their vertex configuration, the sequence of faces that exist on each vertex. For example 4.
AntidiamantEn géométrie, un antidiamant est un polyèdre constitué de deux pyramides à base régulière de sommets S et S', symétriques, dont l'une a subi une rotation autour de l'axe SS'. Des arêtes sont ajoutées pour relier les sommets des deux bases ainsi obtenues. L' ordre de l'antidiamant désigne le nombre d'arêtes issues du sommet S (ou S'). Le cube est un antidiamant d'ordre 3. Un antidiamant est le dual d'un antiprisme semi-régulier. Diamant Trapézoèdre Catégorie:Polyèdre en:Trapezohedron eo:Kajtopluredro es:Tra
Octaèdre tronquéthumb|Développement de l'octaèdre tronqué. L'octaèdre tronqué, ou tétrakaidécaèdre d'Archimède, est un polyèdre possédant 8 faces hexagonales régulières, carrées, identiques et égales. Ses faces étant des polygones réguliers se rencontrant en des sommets identiques, l'octaèdre tronqué est un solide d'Archimède. Chaque face ayant un centre de symétrie, c'est aussi un zonoèdre (à six générateurs). Comme le cube, l'octaèdre tronqué permet de paver l'espace.
Regular icosahedronIn geometry, a regular icosahedron (ˌaɪkɒsəˈhiːdrən,-kə-,-koʊ- or aɪˌkɒsəˈhiːdrən) is a convex polyhedron with 20 faces, 30 edges and 12 vertices. It is one of the five Platonic solids, and the one with the most faces. It has five equilateral triangular faces meeting at each vertex. It is represented by its Schläfli symbol {3,5}, or sometimes by its vertex figure as 3.3.3.3.3 or 35. It is the dual of the regular dodecahedron, which is represented by {5,3}, having three pentagonal faces around each vertex.