Concepts associés (24)
Énergie de liaison
L'énergie de liaison d'un système de corps en interaction (atomes ou particules) est l'énergie nécessaire pour le dissocier. En chimie et en physique atomique l'énergie de liaison, dite aussi chaleur d'atomisation ou enthalpie de liaison, a pour origine l'interaction électromagnétique. En physique nucléaire l'énergie de liaison a pour origine l'interaction forte (notamment, entre quarks) et à un moindre degré l'interaction faible (pour les nucléides radioactifs β). Énergie de liaison (chimie) Énergie de dis
Interacting boson model
The interacting boson model (IBM) is a model in nuclear physics in which nucleons (protons or neutrons) pair up, essentially acting as a single particle with boson properties, with integral spin of either 2 (d-boson) or 0 (s-boson). They correspond to a quintuplet and singlet, i.e. 6 states. It is sometimes known as the Interacting boson approximation (IBA). The IBM1/IBM-I model treats both types of nucleons the same and considers only pairs of nucleons coupled to total angular momentum 0 and 2, called respectively, s and d bosons.
Formule de Weizsäcker
La formule de Weizsäcker, appelée aussi formule de Bethe-Weizsäcker, est une formule semi-empirique donnant une valeur approximative de l'énergie de liaison nucléaire B caractérisant la liaison entre les nucléons qui constituent le noyau des atomes (voir un résumé dans Modèle de la goutte liquide). L'éponyme de formule de Weizsäcker est le physicien allemand Carl Friedrich von Weizsäcker (-) qui l'a proposée en dans un article publié dans le de. Les physiciens Hans Bethe (-) et Robert Bacher (-) en ont simplifié l'expression en .
Force nucléaire
La force nucléaire, qui s'exerce entre nucléons, est responsable de la liaison des protons et des neutrons dans les noyaux atomiques. Elle peut être interprétée en termes d'échanges de mésons légers, comme les pions. Même si son existence est démontrée depuis les années 1930, les scientifiques n'ont pas réussi à établir une loi permettant de calculer sa valeur à partir de paramètres connus, contrairement aux lois de Coulomb et de Newton.
Noyau atomique
vignette|Noyau atomique de l'hélium.Le noyau atomique est la région située au centre d'un atome, constituée de protons et de neutrons (les nucléons). La taille du noyau (de l'ordre du femtomètre, soit ) est environ plus petite que celle de l'atome () et concentre quasiment toute sa masse. Les forces nucléaires qui s'exercent entre les nucléons sont à peu près un million de fois plus grandes que les forces entre les atomes ou les molécules. Les noyaux instables, dits radioactifs, sont ceux d'où s'échappent des neutrons.
Spin quantum number
In physics, the spin quantum number is a quantum number (designated s) that describes the intrinsic angular momentum (or spin angular momentum, or simply spin) of an electron or other particle. It has the same value for all particles of the same type, such as s = 1/2 for all electrons. It is an integer for all bosons, such as photons, and a half-odd-integer for all fermions, such as electrons and protons. The component of the spin along a specified axis is given by the spin magnetic quantum number, conventionally written ms.
Isomérie nucléaire
L’isomérie nucléaire est le fait qu'un même noyau atomique puisse exister dans des états énergétiques distincts caractérisés chacun par un spin et une énergie d'excitation particuliers. L’état correspondant au niveau d'énergie le plus bas est appelé état fondamental : c'est celui dans lequel on trouve naturellement tous les nucléides. Les états d'énergie plus élevée, s'ils existent, sont appelés isomères nucléaires de l'isotope considéré ; ils sont généralement très instables et résultent la plupart du temps d'une désintégration radioactive.
Rayon gamma
vignette|Des rayons gamma sont produits par des processus nucléaires énergétiques au cœur des noyaux atomiques. Un rayon gamma (ou rayon γ) est un rayonnement électromagnétique à haute fréquence émis lors de la désexcitation d'un noyau atomique résultant d'une désintégration. Les photons émis sont caractérisés par des énergies allant de quelques keV à plusieurs centaines de GeV voire jusqu'à pour le plus énergétique jamais observé. Les rayons gamma furent découverts en 1900 par Paul Villard, chimiste français.
Nombre magique (physique)
En physique nucléaire, un nombre magique est un nombre de protons ou de neutrons pour lequel un noyau atomique est particulièrement stable ; dans le modèle en couches décrivant la structure nucléaire, cela correspond à un arrangement en couches complètes. Les sept nombres magiques vérifiés expérimentalement sont : 2, 8, 20, 28, 50, 82, 126 (). Une approche théorique montre que 184 pourrait être le magique.
Hydrogénoïde
Un hydrogénoïde ou atome hydrogénoïde est un atome qui a perdu tous ses électrons sauf un, c'est un ion monoatomique, un cation ne possédant qu'un seul électron. Il a alors une structure semblable à celle de l'atome d'hydrogène, hormis la charge de son noyau Ze où Z est le numéro atomique de l'élément chimique, et e la charge élémentaire. La caractéristique essentielle de ces ions est d'avoir un spectre électromagnétique semblable à celui de l'hydrogène et interprétable dans le cadre du modèle de Bohr.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.