In the mathematical field of general topology, a topological space is said to be metacompact if every open cover has a point-finite open refinement. That is, given any open cover of the topological space, there is a refinement that is again an open cover with the property that every point is contained only in finitely many sets of the refining cover.
A space is countably metacompact if every countable open cover has a point-finite open refinement.
The following can be said about metacompactness in relation to other properties of topological spaces:
Every paracompact space is metacompact. This implies that every compact space is metacompact, and every metric space is metacompact. The converse does not hold: a counter-example is the Dieudonné plank.
Every metacompact space is orthocompact.
Every metacompact normal space is a shrinking space
The product of a compact space and a metacompact space is metacompact. This follows from the tube lemma.
An easy example of a non-metacompact space (but a countably metacompact space) is the Moore plane.
In order for a Tychonoff space X to be compact it is necessary and sufficient that X be metacompact and pseudocompact (see Watson).
A topological space X is said to be of covering dimension n if every open cover of X has a point-finite open refinement such that no point of X is included in more than n + 1 sets in the refinement and if n is the minimum value for which this is true. If no such minimal n exists, the space is said to be of infinite covering dimension.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
A collection of subsets of a topological space is said to be locally finite if each point in the space has a neighbourhood that intersects only finitely many of the sets in the collection. In the mathematical field of topology, local finiteness is a property of collections of subsets of a topological space. It is fundamental in the study of paracompactness and topological dimension. Note that the term locally finite has different meanings in other mathematical fields. A finite collection of subsets of a topological space is locally finite.
Un recouvrement d'un ensemble E est une famille (X) d'ensembles dont l'union contient E, c'est-à-dire telle que tout élément de E appartient à au moins l'un des X. Certains auteurs imposent de plus que les X soient des sous-ensembles de E. Dans ce cas, les X forment un recouvrement de E (si et) seulement si leur union est égale à E, et une partition de E s'ils sont de plus non vides et deux à deux disjoints. Par exemple, pour E = {1, 2, 3, 4}, la famille (∅, {1, 2, 3}, {3, 4}) n'est qu'un recouvrement alors que ({1, 2}, {3, 4}) est une partition.
En topologie — une branche des mathématiques —, la topologie codénombrable, variante de la topologie cofinie, est décrite dans le livre Counterexamples in Topology de Lynn Arthur Steen et J. Arthur Seebach, Jr. (exemple 20 : ). C'est la topologie que l'on peut définir sur un ensemble X en prenant comme ouverts l'ensemble vide ainsi que les parties de X dont le complémentaire dans X est au plus dénombrable. Formellement, la topologie codénombrable sur X est : La topologie induite sur une partie Y de X est la topologie codénombrable sur Y.
Couvre les progressions arithmétiques, les treillis, la vérification formelle, les chaînes, les formules explicites, les relations de récurrence, les formules fermées et l'argument Diagonal de Cantor.
This research investigates new methods of designing folded plate structures that can be built with cross-laminated timber panels. Folded plate structures are attractive to both architects and engineers for their structural, spatial, and plastic qualities. ...