Résumé
En mathématiques, la recherche de formules exactes donnant tous les nombres premiers, certaines familles de nombres premiers ou le nombre premier s'est généralement avérée vaine, ce qui a amené à se contenter de formules approchées. Cette page recense les principaux résultats obtenus. L'espoir d'obtenir une formule exacte et simple donnant le n-ième nombre premier p, ou le nombre π(n) de nombres premiers inférieurs ou égaux à n, s'est très tôt heurté à l'extrême irrégularité de leur répartition, ce qui a amené à se contenter d'objectifs moins ambitieux. Mais même la recherche de formules ne donnant que des nombres premiers s'avère assez décevante ; ainsi, il est facile de montrer qu'il n'existe aucune fonction polynomiale non constante P(n) qui ne prendrait que des valeurs premières pour tous les entiers n, ou même pour presque tous les n ; en fait, on ignore même s'il existe un polynôme de degré > 1 qui prenne une infinité de valeurs premières. C'est ce qui explique l'intérêt de la remarque d'Euler : le polynôme quadratique P(n) = n + n + 41 est premier pour tous les nombres entiers positifs strictement inférieurs à 40 ( et si n est un multiple de 41, P(n) sera lui aussi un multiple de 41, et donc non premier). D'ailleurs, 41 est le plus grand « nombre chanceux d'Euler », c'est-à-dire le plus grand entier A pour lequel le polynôme n + n + A est premier pour tous les n strictement inférieurs à A – 1 ; cela résulte du théorème de Stark-Heegner, un résultat de la théorie des corps de classes qui n'a été démontré qu'en 1967. De manière similaire, d'autres formules polynomiales (de degré plus élevé) produisent des suites de nombres premiers. Ainsi, en 2010, l'une d'entre elles a permis d'établir un nouveau record : une suite de 58 nombres premiers : est premier pour chaque entier n de –42 à 15. D'autres formules utilisant des fonctions plus générales, telle celle de Mersenne, avaient été envisagées, la plus célèbre étant celle conjecturée par Fermat : F = 2 + 1 est premier pour tout n.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.