Concept

Nerf (théorie des catégories)

Résumé
En mathématiques, et plus particulièrement en théorie des catégories, le nerf d'une petite catégorie est un ensemble simplicial construit à partir des objets et des morphismes de . La réalisation géométrique de cet ensemble simplicial est un espace topologique, appelé l'espace classifiant de la catégorie . Ces objets étroitement liés peuvent fournir des informations sur certains catégories familières et utiles à l'aide de la topologie algébrique, le plus souvent la théorie de l'homotopie. Le nerf d'une catégorie est souvent utilisé pour construire des versions topologiques d'espaces de modules. Si est un objet de , ses espaces de modules devrait d'une certaine manière encoder tous les objets isomorphes à et garder une trace des différents isomorphismes entre tous les objets de cette catégorie. Cela peut devenir assez compliqué, surtout si les objets ont beaucoup d'automorphismes différents de l'identité. Le nerf fournit une manière combinatoire d'organiser ces données. Depuis que les ensembles simpliciaux ont une bonne théorie de l'homotopie, on peut se poser des questions sur la signification des différents groupes d'homotopie . On espère que les réponses à ces questions fournissent des informations intéressantes à propos de la catégorie d'origine , ou sur des catégories reliées. La notion de nerf est une généralisation directe de la notion classique d'espace classifiant d'un groupe discret ; voir ci-dessous pour plus de détails. Soit une petite catégorie. Il y a un 0-simplexe de pour chaque objet de . Il y a un 1-simplexe pour chaque morphisme dans . Supposons que et sont des morphismes dans . Alors il y a également leur composition . Le diagramme suggère notre ligne de conduite : ajouter un 2-simplexe pour ce triangle commutatif. Tous les 2-simplexes de proviennent d'une paire de morphismes composables de cette façon. En général, est composé des -uplets de morphismes composables de . Pour achever la définition de comme un ensemble simplicial, on doit également spécifier les applications faces et dégénérescences.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.