En mathématiques, et plus particulièrement en théorie des catégories, le nerf d'une petite catégorie est un ensemble simplicial construit à partir des objets et des morphismes de . La réalisation géométrique de cet ensemble simplicial est un espace topologique, appelé l'espace classifiant de la catégorie . Ces objets étroitement liés peuvent fournir des informations sur certains catégories familières et utiles à l'aide de la topologie algébrique, le plus souvent la théorie de l'homotopie.
Le nerf d'une catégorie est souvent utilisé pour construire des versions topologiques d'espaces de modules. Si est un objet de , ses espaces de modules devrait d'une certaine manière encoder tous les objets isomorphes à et garder une trace des différents isomorphismes entre tous les objets de cette catégorie. Cela peut devenir assez compliqué, surtout si les objets ont beaucoup d'automorphismes différents de l'identité. Le nerf fournit une manière combinatoire d'organiser ces données. Depuis que les ensembles simpliciaux ont une bonne théorie de l'homotopie, on peut se poser des questions sur la signification des différents groupes d'homotopie . On espère que les réponses à ces questions fournissent des informations intéressantes à propos de la catégorie d'origine , ou sur des catégories reliées.
La notion de nerf est une généralisation directe de la notion classique d'espace classifiant d'un groupe discret ; voir ci-dessous pour plus de détails.
Soit une petite catégorie. Il y a un 0-simplexe de pour chaque objet de . Il y a un 1-simplexe pour chaque morphisme dans . Supposons que et sont des morphismes dans . Alors il y a également leur composition .
Le diagramme suggère notre ligne de conduite : ajouter un 2-simplexe pour ce triangle commutatif. Tous les 2-simplexes de proviennent d'une paire de morphismes composables de cette façon.
En général, est composé des -uplets de morphismes composables
de . Pour achever la définition de comme un ensemble simplicial, on doit également spécifier les applications faces et dégénérescences.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
Déplacez-vous dans le calcul et la réalisation géométrique de petites catégories, explorant la relation entre les nerfs et les structures géométriques.
En mathématiques, la théorie des catégories supérieures est la partie de la théorie des catégories à un ordre supérieur, ce qui signifie que certaines égalités sont remplacées par des flèches explicites afin de pouvoir étudier explicitement la structure derrière ces égalités. La théorie des catégories supérieures est souvent appliquée en topologie algébrique (en particulier en théorie de l'homotopie ), où l'on étudie les invariants algébriques des espaces, tels que leur ∞-groupoïde fondamental faible.
En mathématiques, et plus particulièrement en théorie des catégories et en topologie algébrique, la notion de groupoïde généralise à la fois les notions de groupe, de relation d'équivalence sur un ensemble, et de l'action d'un groupe sur un ensemble. Elle a été initialement développée par Heinrich Brandt en 1927. Les groupoïdes sont souvent utilisés pour représenter certaines informations sur des objets topologiques ou géométriques comme les variétés. Un groupoïde est une petite catégorie dans laquelle tout morphisme est un isomorphisme.
En mathématiques, un ensemble simplicial X est un objet de nature combinatoire intervenant en topologie. Il est la donnée : d'une famille (X) d'ensembles, indexée par les entiers naturels, les éléments de X étant pensés comme des simplexes de dimension n et pour toute application croissanted'une application le tout tel que Autrement dit : X est un foncteur contravariant, de la catégorie simpliciale Δ dans la catégorie Set des ensembles, ou encore un foncteur covariant de la catégorie opposée Δ dans Set.
In this thesis, we study the homotopical relations of 2-categories, double categories, and their infinity-analogues. For this, we construct homotopy theories for the objects of interest, and show that there are homotopically full embeddings of 2-categories ...
We prove that four different ways of defining Cartesian fibrations and the Cartesian model structure are all Quillen equivalent: 1.On marked simplicial sets (due to Lurie [31]), 2.On bisimplicial spaces (due to deBrito [12]), 3.On bisimplicial sets, 4.On m ...
2021
,
Shadows for bicategories, defined by Ponto, provide a useful framework that generalizes classical and topological Hochschild homology. In this paper, we define Hochschild-type invariants for monoids in a symmetric monoidal, simplicial model category V, as ...