In mathematics, a simplicial set is an object composed of simplices in a specific way. Simplicial sets are higher-dimensional generalizations of directed graphs, partially ordered sets and . Formally, a simplicial set may be defined as a contravariant functor from the to the . Simplicial sets were introduced in 1950 by Samuel Eilenberg and Joseph A. Zilber.
Every simplicial set gives rise to a "nice" topological space, known as its geometric realization. This realization consists of geometric simplices, glued together according to the rules of the simplicial set. Indeed, one may view a simplicial set as a purely combinatorial construction designed to capture the essence of a "well-behaved" topological space for the purposes of homotopy theory. Specifically, the category of simplicial sets carries a natural , and the corresponding is equivalent to the familiar homotopy category of topological spaces.
Simplicial sets are used to define , a basic notion of . A construction analogous to that of simplicial sets can be carried out in any category, not just in the category of sets, yielding the notion of simplicial objects.
A simplicial set is a categorical (that is, purely algebraic) model capturing those topological spaces that can be built up (or faithfully represented up to homotopy) from simplices and their incidence relations. This is similar to the approach of CW complexes to modeling topological spaces, with the crucial difference that simplicial sets are purely algebraic and do not carry any actual topology.
To get back to actual topological spaces, there is a geometric realization functor which turns simplicial sets into compactly generated Hausdorff spaces. Most classical results on CW complexes in homotopy theory are generalized by analogous results for simplicial sets. While algebraic topologists largely continue to prefer CW complexes, there is a growing contingent of researchers interested in using simplicial sets for applications in algebraic geometry where CW complexes do not naturally exist.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
Homology is one of the most important tools to study topological spaces and it plays an important role in many fields of mathematics. The aim of this course is to introduce this notion, understand its
In this reading group, we will work together through recent important papers in applied topology.
Participants will take turns presenting articles, then leading a discussion of the contents.
En mathématiques, plus précisément en théorie de l'homotopie, une catégorie de modèles est une catégorie dotée de trois classes de morphismes, appelés équivalences faibles, fibrations et cofibrations, satisfaisant à certains axiomes. Ceux-ci sont abstraits du comportement homotopique des espaces topologiques et des complexes de chaînes. La théorie des catégories de modèles est une sous-branche de la théorie des catégories et a été introduite par Daniel Quillen en 1967 pour généraliser l'étude de l'homotopie aux catégories et ainsi avoir de nouveaux outils pour travailler avec l'homotopie dans les espaces topologiques.
In combinatorics, an abstract simplicial complex (ASC), often called an abstract complex or just a complex, is a family of sets that is closed under taking subsets, i.e., every subset of a set in the family is also in the family. It is a purely combinatorial description of the geometric notion of a simplicial complex. For example, in a 2-dimensional simplicial complex, the sets in the family are the triangles (sets of size 3), their edges (sets of size 2), and their vertices (sets of size 1).
En mathématiques, un espace classifiant pour un groupe topologique G est la base d’un fibré principal particulier EG → BG appelé fibré universel, induisant tous les fibrés ayant ce groupe de structure sur n’importe quel CW-complexe X par (pullback). Dans le cas d’un groupe discret, la définition d’espace classifiant correspond à celle d’un espace d'Eilenberg-MacLane K(G, 1), c’est-à-dire un espace connexe par arcs dont tous les groupes d'homotopie sont triviaux en dehors du groupe fondamental (lequel est isomorphe à G).
Phase synchronizations in models of coupled oscillators such as the Kuramoto model have been widely studied with pairwise couplings on arbitrary topologies, showing many unexpected dynamical behaviors. Here, based on a recent formulation the Kuramoto model ...
Simplicial Kuramoto models have emerged as a diverse and intriguing class of models describing oscillators on simplices rather than nodes. In this paper, we present a unified framework to describe different variants of these models, categorized into three ...
The field of computational topology has developed many powerful tools to describe the shape of data, offering an alternative point of view from classical statistics. This results in a variety of complex structures that are not always directly amenable for ...