Résumé
In mathematics, an integer sequence is a sequence (i.e., an ordered list) of integers. An integer sequence may be specified explicitly by giving a formula for its nth term, or implicitly by giving a relationship between its terms. For example, the sequence 0, 1, 1, 2, 3, 5, 8, 13, ... (the Fibonacci sequence) is formed by starting with 0 and 1 and then adding any two consecutive terms to obtain the next one: an implicit description. The sequence 0, 3, 8, 15, ... is formed according to the formula n2 − 1 for the nth term: an explicit definition. Alternatively, an integer sequence may be defined by a property which members of the sequence possess and other integers do not possess. For example, we can determine whether a given integer is a perfect number, even though we do not have a formula for the nth perfect number. Integer sequences that have their own name include: Abundant numbers Baum–Sweet sequence Bell numbers Binomial coefficients Carmichael numbers Catalan numbers Composite numbers Deficient numbers Euler numbers Even and odd numbers Factorial numbers Fibonacci numbers Fibonacci word Figurate numbers Golomb sequence Happy numbers Highly composite numbers Highly totient numbers Home primes Hyperperfect numbers Juggler sequence Kolakoski sequence Lucky numbers Lucas numbers Motzkin numbers Natural numbers Padovan numbers Partition numbers Perfect numbers Prime numbers Pseudoprime numbers Recamán's sequence Regular paperfolding sequence Rudin–Shapiro sequence Semiperfect numbers Semiprime numbers Superperfect numbers Thue–Morse sequence Ulam numbers Weird numbers Wolstenholme number An integer sequence is a computable sequence if there exists an algorithm which, given n, calculates an, for all n > 0. The set of computable integer sequences is countable. The set of all integer sequences is uncountable (with cardinality equal to that of the continuum), and so not all integer sequences are computable. Although some integer sequences have definitions, there is no systematic way to define what it means for an integer sequence to be definable in the universe or in any absolute (model independent) sense.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (7)
Série génératrice
En mathématiques, et notamment en analyse et en combinatoire, une série génératrice (appelée autrefois fonction génératrice, terminologie encore utilisée en particulier dans le contexte de la théorie des probabilités) est une série formelle dont les coefficients codent une suite de nombres (ou plus généralement de polynômes) ; on dit que la série est associée à la suite. Ces séries furent introduites par Abraham de Moivre en 1730, pour obtenir des formules explicites pour des suites définies par récurrence linéaire.
Nombre de Catalan
En mathématiques, et plus particulièrement en combinatoire, les nombres de Catalan forment une suite d'entiers naturels utilisée dans divers problèmes de dénombrement, impliquant souvent des objets définis de façon récursive. Ils sont nommés ainsi en l'honneur du mathématicien belge Eugène Charles Catalan (1814-1894) qui les a étudiés en 1838, mais étaient déjà connus d'Euler. Le nombre de Catalan d'indice n est défini par : Pour , on peut écrire : (voir Coefficient binomial central).
Encyclopédie en ligne des suites de nombres entiers
L'encyclopédie en ligne des suites de nombres entiers (originellement en anglais On-Line Encyclopedia of Integer Sequences, couramment abrégé sous le sigle OEIS) est un site web permettant d'effectuer gratuitement des recherches parmi une base de données de suites d'entiers présentant un intérêt mathématique ou parfois simplement ludique. Dans cette forme et cette présentation, c'est la plus grande du monde (en 2012). Elle est consultée des milliers de fois chaque jour.
Afficher plus