In this manuscript, we present a collective multigrid algorithm to solve efficiently the large saddle-point systems of equations that typically arise in PDE-constrained optimization under uncertainty, and develop a novel convergence analysis of collective ...
We generalize and provide a linear algebra-based perspective on a finite element (FE) ho-mogenization scheme, pioneered by Schneider et al. (2017)[1] and Leuschner and Fritzen (2018)[2]. The efficiency of the scheme is based on a preconditioned, well-scale ...
Sylvester matrix equations are ubiquitous in scientific computing. However, few solution techniques exist for their generalized multiterm version, as they now arise in an increasingly large number of applications. In this work, we consider algebraic parame ...
We investigate methods for manipulating classifier explanations while keeping the predictions unchanged. Our focus is on using a sparse attack, which seeks to alter only a minimal number of input features. We present an efficient and novel algorithm for co ...
The discretization of robust quadratic optimal control problems under uncertainty using the finite element method and the stochastic collocation method leads to large saddle-point systems, which are fully coupled across the random realizations. Despite its ...
This paper considers the multi-agent linear least-squares problem in a server-agent network architecture. The system comprises multiple agents, each with a set of local data points. The agents are connected to a server, and there is no inter-agent communic ...
Sharpness-Aware Minimization (SAM) is a recent training method that relies on worst-case weight perturbations which significantly improves generalization in various settings. We argue that the existing justifications for the success of SAM which are based ...
Iterative substructuring Domain Decomposition (DD) methods have been extensively studied, and they are usually associated with nonoverlapping decompositions. It is less known that classical overlapping DD methods can also be formulated in substructured for ...
Two-level domain decomposition methods are very powerful techniques for the efficient numerical solution of partial differential equations (PDEs). A two-level domain decomposition method requires two main components: a one-level preconditioner (or its corr ...
We present the construction of additive multilevel preconditioners, also known as BPX preconditioners, for the solution of the linear system arising in isogeometric adaptive schemes with (truncated) hierarchical B-splines. We show that the locality of hier ...