Vague scélératevignette|300px|droite|Vague scélérate vue d’un navire marchand (1940, golfe de Gascogne, ligne de sonde des ). Les vagues scélérates sont des vagues océaniques très hautes, soudaines, considérées comme très rares. Cette rareté est relative, les observations ne concernant qu'une très faible partie d'entre elles, compte tenu de l'étendue des océans et de la rapidité avec laquelle les vagues se forment et se défont au sein des trains de vagues où elles se propagent.
Soliton optiqueUn soliton optique est une impulsion électromagnétique se propageant sans déformation. Par sa nature même, elle est solution stable de l'équation de propagation dans le milieu qu'elle traverse (typiquement une fibre optique). Le soliton naît d'un équilibre entre deux effets qui se compensent. Dans le cas d'un soliton optique, ces effets sont essentiellement l'automodulation de phase et la dispersion anormale. Imaginons une impulsion électromagnétique se propageant.
Dispersion (water waves)In fluid dynamics, dispersion of water waves generally refers to frequency dispersion, which means that waves of different wavelengths travel at different phase speeds. Water waves, in this context, are waves propagating on the water surface, with gravity and surface tension as the restoring forces. As a result, water with a free surface is generally considered to be a dispersive medium. For a certain water depth, surface gravity waves – i.e.
Topological quantum numberIn physics, a topological quantum number (also called topological charge) is any quantity, in a physical theory, that takes on only one of a discrete set of values, due to topological considerations. Most commonly, topological quantum numbers are topological invariants associated with topological defects or soliton-type solutions of some set of differential equations modeling a physical system, as the solitons themselves owe their stability to topological considerations.
Thirring modelThe Thirring model is an exactly solvable quantum field theory which describes the self-interactions of a Dirac field in (1+1) dimensions. The Thirring model is given by the Lagrangian density where is the field, g is the coupling constant, m is the mass, and , for , are the two-dimensional gamma matrices. This is the unique model of (1+1)-dimensional, Dirac fermions with a local (self-)interaction. Indeed, since there are only 4 independent fields, because of the Pauli principle, all the quartic, local interactions are equivalent; and all higher power, local interactions vanish.
Paquet d'ondeEn physique, un paquet d'onde, ou train d'onde, est une enveloppe ou un paquet contenant un nombre arbitraire d'ondes élémentaires. Il existe aussi des demi paquets d'onde, qui sont des paquets d'onde scindés en quadrature de phase. En mécanique quantique, le paquet d'onde possède une signification particulière : il est interprété comme étant une onde de probabilité qui décrit la probabilité pour une particule (ou des particules) dans un état donné d'avoir une position et une quantité de mouvement données.
Réseau de TodaEn physique du solide, le réseau de Toda, introduit par en 1967, est un modèle simple pour un cristal unidimensionnel. Il est donné par une chaîne de particules dont l'interaction avec le voisin le plus proche est décrit par l'opérateur hamiltonien et les équations du mouvement où est le déplacement de la -ième particule depuis sa position d'équilibre, est sa quantité de mouvement (masse ), et est le potentiel Toda.
Automodulation de phaseL'automodulation de phase (self-phase modulation, souvent abrégé en SPM en anglais) est un effet optique non linéaire d'interaction lumière-matière (gaz, solide, liquide). Une impulsion ultra-courte, lorsqu'elle voyage dans un milieu matériel, induit une variation de l'indice de réfraction de ce milieu par effet Kerr. Cette variation induit à son tour un décalage de phase dans l'impulsion, ce qui conduit à une modification du spectre en fréquence de l'impulsion.