Système intégrableEn mécanique hamiltonienne, un système intégrable au sens de Liouville est un système qui possède un nombre suffisant de indépendantes. Lorsque le mouvement est borné, la dynamique est alors périodique ou quasi périodique. Soit un système à N degrés de liberté qui est décrit à l'instant par : les N coordonnées généralisées les N moments conjugués . À chaque instant, les 2N coordonnées définissent un point dans l'espace des phases Γ = R2N. L'évolution dynamique du système sous le flot hamiltonien se traduit par une courbe continue appelée orbite dans cet espace des phases.
Équations de Boussinesqthumb|right|250px|Ondes de gravité à l'entrée d'un port (milieu à profondeur variable). Les équations de Boussinesq en mécanique des fluides désignent un système d'équations d'ondes obtenu par approximation des équations d'Euler pour des écoulements incompressibles irrotationnels à surface libre. Elles permettent de prévoir les ondes de gravité comme ondes cnoïdales, ondes de Stokes, houle, tsunamis, solitons, etc. Ces équations ont été introduites par Joseph Boussinesq en 1872 et sont un exemple d'équations aux dérivées partielles dispersives.
Onde de gravitéthumb|upright=1.5|Motif nuageux formé par les ondes de gravité en aval de l'Île Amsterdam, une île volcanique de l'Océan Indien En mécanique des fluides, on désigne par onde de gravité une onde se déplaçant sur la surface libre d'un fluide soumis à la gravité. En océanographie, les vagues en milieu ouvert ou le ballottement en milieu fermé constituent des exemples d'ondes de gravité.
Dispersion (mécanique ondulatoire)vignette|Dispersion de la lumière blanche au passage d'un dioptre. En mécanique ondulatoire, la dispersion est le phénomène affectant une onde se propageant dans un milieu dit « dispersif », c'est-à-dire dans lequel les différentes longueurs d’onde constituant l'onde ne se propagent pas à la même vitesse. On rencontre ce phénomène pour tous types d'ondes, comme la lumière, le son et les ondes mécaniques (vagues, séismes, etc.). À l'exception du vide, tous les milieux sont dispersifs à des degrés divers.
Monopôle magnétiqueUn monopôle magnétique est une particule hypothétique qui porterait une masse (ou charge) magnétique ponctuelle, au contraire des aimants habituels qui possèdent deux pôles magnétiques opposés. L'existence de monopôles magnétiques est exclue par l'électromagnétisme classique et par la théorie de la relativité, mais en 1931 Paul Dirac en a démontré l'existence théorique dans le cadre de la physique quantique. En septembre 2009, des chercheurs ont observé des quasiparticules artificielles présentant les propriétés du monopôle magnétique.
Lagrangien (théorie des champs)La théorie lagrangienne des champs est un formalisme de la théorie classique des champs. C'est l'analogue de la théorie des champs de la mécanique lagrangienne. La mécanique lagrangienne est utilisée pour analyser le mouvement d'un système de particules discrètes chacune ayant un nombre fini de degrés de liberté. La théorie lagrangienne des champs s'applique aux continus et aux champs, qui ont un nombre infini de degrés de liberté.
Onde cnoïdalevignette|Bombardiers de la USAAF survolant une houle en eau peu profonde près de la côte du Panama en 1933. Ces crêtes bien définies et ces creux plats sont caractéristiques des ondes cnoïdales. Les ondes cnoïdales sont des ondes de gravité rencontrées sur la surface de la mer, des vagues. Elles sont solutions de l'équation de Korteweg-de Vries où interviennent les fonctions elliptiques de Jacobi notées cn, d'où le nom d'ondes « cn-oïdales ». Ce type d'onde apparaît également dans les problèmes de propagation d'onde acoustique ionique.
Défaut topologiqueEn cosmologie, un défaut topologique est une configuration souvent stable de matière que certaines théories prédisent avoir été formée lors des transitions de phase de l'univers primitif. Selon la nature des brisures de symétrie, on suppose la formation de nombreux solitons au travers du mécanisme de Brout-Englert-Higgs-Hagen-Guralnik-Kibble. Les défauts topologiques les plus courants sont les monopôles magnétiques, les cordes cosmiques, les murs de domaine, les skyrmions et les textures.
Inverse scattering transformIn mathematics, the inverse scattering transform is a method for solving some non-linear partial differential equations. The method is a non-linear analogue, and in some sense generalization, of the Fourier transform, which itself is applied to solve many linear partial differential equations. The name "inverse scattering method" comes from the key idea of recovering the time evolution of a potential from the time evolution of its scattering data: inverse scattering refers to the problem of recovering a potential from its scattering matrix, as opposed to the direct scattering problem of finding the scattering matrix from the potential.
Lax pairIn mathematics, in the theory of integrable systems, a Lax pair is a pair of time-dependent matrices or operators that satisfy a corresponding differential equation, called the Lax equation. Lax pairs were introduced by Peter Lax to discuss solitons in continuous media. The inverse scattering transform makes use of the Lax equations to solve such systems. A Lax pair is a pair of matrices or operators dependent on time and acting on a fixed Hilbert space, and satisfying Lax's equation: where is the commutator.