Couvre les techniques d'apprentissage supervisées et non supervisées dans l'apprentissage automatique, en mettant en évidence leurs applications dans la finance et l'analyse environnementale.
Explore les noyaux pour simplifier la représentation des données et la rendre linéairement séparable dans les espaces de fonctionnalités, y compris les fonctions populaires et les exercices pratiques.
Résume les cartes de Kohonen, qui couvrent l'initialisation, l'échantillonnage, l'appariement des similarités, des exemples et des applications dans l'apprentissage automatique et la classification des données.
Couvre les bases de l'apprentissage automatique, les défis en matière de déploiement, les attaques contradictoires et les préoccupations en matière de protection de la vie privée.