Explore des sujets avancés dans l'apprentissage automatique, en se concentrant sur les extensions SVR et l'optimisation hyperparamétrique, y compris Nu-SVR et RVR.
Déplacez-vous dans les potentiels interatomiques de la machine appris, montrant leur précision et leur rentabilité dans la prédiction des propriétés chimiques.
Explore les applications d'apprentissage automatique dans les simulations atomistes, en mettant l'accent sur la modélisation de l'eau, les potentiels de réseaux neuronaux et la reconnaissance des structures.
Explore l'apprentissage automatique dans les simulations de dynamique moléculaire, s'attaquant à la malédiction de la dimensionnalité, de la représentation du réseau neuronal et de l'estimation des champs de force.
Explore l'application de la physique statistique à la compréhension de l'apprentissage profond en mettant l'accent sur les réseaux neuronaux et les défis de l'apprentissage automatique.
Explore le rôle de l'unité Alice de l'EPFL dans l'apprentissage automatique et l'IA en Europe, en mettant l'accent sur les progrès de la recherche et la collaboration au sein de la communauté de l'IA.
Explore les applications d'apprentissage automatique dans l'analyse du système terrestre à l'aide de données de télédétection, en mettant l'accent sur l'interprétation automatique de l'image et l'IA explicable.
Explore la caractéristique universelle de la formation de prix intrajournalière en utilisant des techniques d'apprentissage en profondeur pour prévoir les changements de prix en fonction de l'historique des flux d'ordres.
Explore la classification des images en utilisant des arbres de décision et des forêts aléatoires pour réduire la variance et améliorer la robustesse du modèle.