Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la prédiction des rendements de réaction avec des modèles d'apprentissage en profondeur et l'importance d'ensembles de données de haute qualité en chimie.
Introduit le traitement du langage naturel (NLP) et ses applications, couvrant la tokenisation, l'apprentissage automatique, l'analyse du sentiment et les applications NLP suisses.
Couvre le clustering, la classification et le support des principes, des applications et de l'optimisation des machines vectorielles, y compris la classification non linéaire et les effets du noyau gaussien.
Couvre l'expansion des fonctionnalités polynomiales, les méthodes du noyau, les représentations des données, la normalisation et la gestion des données déséquilibrées dans l'apprentissage automatique.
Couvre la descente du gradient stochastique, la régression linéaire, la régularisation, l'apprentissage supervisé et la nature itérative de la descente du gradient.
Explore la théorie de l'ensachage, démontrant comment elle améliore les performances du modèle et l'importance des données non corrélées pour son succès.