Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Se penche sur l'analyse des données topologiques, en mettant l'accent sur les fondements mathématiques des réseaux neuronaux et en explorant l'hypothèse multiple et l'homologie persistante.
Introduit les bases de l'apprentissage automatique, y compris la collecte de données, l'évaluation des modèles et la normalisation des fonctionnalités.
Explore les machines vectorielles de support, maximisant la marge pour une classification robuste et la transition vers la SVM logicielle pour les données séparables non linéairement.
Explore la collecte de données, la sélection des caractéristiques, la construction de modèles et l'évaluation des performances dans l'apprentissage automatique, en mettant l'accent sur l'ingénierie des caractéristiques et la sélection des modèles.
Explore les effets isotopiques cinétiques et les relations linéaires d'énergie libre, en introduisant des méthodes d'apprentissage automatique pour les applications chimiques.
Explore les charges de travail d'apprentissage automatique, les couches DNN, les tableaux systolique et l'efficacité des accélérateurs spécialisés tels que les TPU.
Introduit des réseaux neuronaux convolutifs, couvrant les couches entièrement connectées, les convolutions, la mise en commun, les traductions PyTorch et des applications telles que l'estimation de pose à la main et l'estimation de tubalité.