String operationsIn computer science, in the area of formal language theory, frequent use is made of a variety of string functions; however, the notation used is different from that used for computer programming, and some commonly used functions in the theoretical realm are rarely used when programming. This article defines some of these basic terms. A string is a finite sequence of characters. The empty string is denoted by . The concatenation of two string and is denoted by , or shorter by . Concatenating with the empty string makes no difference: .
Étoile de KleeneL'étoile de Kleene, parfois appelée fermeture de Kleene ou encore fermeture itérative, est, en théorie des langages, un opérateur unaire utilisé pour décrire les langages formels. Le nom étoile vient de la notation employée, un astérisque, et Kleene de Stephen Cole Kleene qui l'a introduite. L'étoile de Kleene est l'un des trois opérateurs de base utilisés pour définir une expression rationnelle, avec la concaténation et l'union ensembliste.
ConcaténationLe terme concaténation (substantif féminin), du latin cum (« avec ») et catena (« chaîne, liaison »), désigne l'action de mettre bout à bout au moins deux chaînes de caractères ou de péricopes. Formellement, dans le contexte théorique des langages formels : on se donne un ensemble fini Σ, et on appelle l'ensemble des séquences d'éléments de Σ ; la concaténation est alors la loi de composition interne sur qui aux séquences et , où m et n sont des entiers naturels, associe la séquence .
Monoïde des tracesEn mathématiques et en informatique, une trace est un ensemble de mots, où certaines lettres peuvent commuter, et d'autres non. Le monoïde des traces ou monoïde partiellement commutatif libre est le monoïde quotient du monoïde libre par une relation de commutation de lettres. Le monoïde des traces est donc une structure qui se situe entre le monoïde libre et le monoïde commutatif libre. L'intérêt mathématique du monoïde des traces a été mis en évidence dans l'ouvrage fondateur .
Ordre lexicographiqueEn mathématiques, un ordre lexicographique est un ordre que l'on définit sur les suites finies d'éléments d'un ensemble ordonné (ou, de façon équivalente, les mots construits sur un ensemble ordonné). Sa définition est une généralisation de l'ordre du dictionnaire : l'ensemble ordonné est l'alphabet, les mots sont bien des suites finies de lettres de l'alphabet. La principale propriété de l'ordre lexicographique est de conserver la totalité de l'ordre initial.
Monoïde syntaxiqueEn informatique théorique, et en particulier dans la théorie des automates finis, le monoïde syntaxique d'un langage formel est un monoïde naturellement attaché au langage. L'étude de ce monoïde permet de refléter certaines propriétés combinatoires du langage par des caractéristiques algébriques du monoïde. L'exemple le plus célèbre de cette relation est la caractérisation, due à Marcel-Paul Schützenberger, des langages rationnels sans étoile (que l'on peut décrire par des expressions rationnelles avec complément mais sans l'étoile de Kleene) : ce sont les langages dont le monoïde syntaxique est fini et apériodique, c'est-à-dire ne contient pas de sous-groupe non trivial.
Chaîne videIn formal language theory, the empty string, or empty word, is the unique string of length zero. Formally, a string is a finite, ordered sequence of characters such as letters, digits or spaces. The empty string is the special case where the sequence has length zero, so there are no symbols in the string. There is only one empty string, because two strings are only different if they have different lengths or a different sequence of symbols. In formal treatments, the empty string is denoted with ε or sometimes Λ or λ.
SemiautomatonIn mathematics and theoretical computer science, a semiautomaton is a deterministic finite automaton having inputs but no output. It consists of a set Q of states, a set Σ called the input alphabet, and a function T: Q × Σ → Q called the transition function. Associated with any semiautomaton is a monoid called the characteristic monoid, input monoid, transition monoid or transition system of the semiautomaton, which acts on the set of states Q.
Automate fini déterministeUn automate fini déterministe, parfois abrégé en AFD (en anglais deterministic finite automaton, abrégé en DFA) est un automate fini dont les transitions à partir de chaque état sont déterminées de façon unique par le symbole d'entrée. Un tel automate se distingue ainsi d'un automate fini non déterministe, où au contraire plusieurs possibilités de transitions peuvent exister simultanément pour un état et un symbole d'entrée donné.
Algèbre de processusLes algèbres de processus sont une famille de langages formels permettant de modéliser les systèmes (informatiques) concurrents ou distribués. Les algèbres de processus fournissent des outils formels permettant principalement de caractériser les interactions entre processus au sein d'un système concurrent ou distribué, les interactions prenant la forme d'échanges de messages. L'étude des algèbres de processus relève de l'informatique théorique, et leurs applications relèvent principalement du génie logiciel, en particulier des systèmes distribués.