Risk measureIn financial mathematics, a risk measure is used to determine the amount of an asset or set of assets (traditionally currency) to be kept in reserve. The purpose of this reserve is to make the risks taken by financial institutions, such as banks and insurance companies, acceptable to the regulator. In recent years attention has turned towards convex and coherent risk measurement. A risk measure is defined as a mapping from a set of random variables to the real numbers. This set of random variables represents portfolio returns.
Expected shortfallExpected shortfall (ES) is a risk measure—a concept used in the field of financial risk measurement to evaluate the market risk or credit risk of a portfolio. The "expected shortfall at q% level" is the expected return on the portfolio in the worst of cases. ES is an alternative to value at risk that is more sensitive to the shape of the tail of the loss distribution. Expected shortfall is also called conditional value at risk (CVaR), average value at risk (AVaR), expected tail loss (ETL), and superquantile.
Value at riskLa VaR (de l'anglais value at risk, mot à mot : « valeur à risque », ou « valeur en jeu ») est une notion utilisée généralement pour mesurer le risque de marché d'un portefeuille d'instruments financiers. Elle correspond au montant de pertes qui ne devrait être dépassé qu'avec une probabilité donnée sur un horizon temporel donné. L'utilisation de la VaR n'est désormais plus limitée aux instruments financiers : on peut en faire un outil de gestion des risques dans tous les domaines (, par exemple).
Risque de marchéLe risque de marché est le risque de perte qui peut résulter des fluctuations des prix des instruments financiers qui composent un portefeuille. Le risque peut porter sur le cours des actions, les taux d'intérêt, les taux de change, les cours de matières premières, etc. Par extension, c'est le risque des activités économiques directement ou indirectement liées à un tel marché (par exemple, un exportateur est soumis aux taux de change, un constructeur automobile au prix de l'acier...).
Distortion risk measureIn financial mathematics and economics, a distortion risk measure is a type of risk measure which is related to the cumulative distribution function of the return of a financial portfolio. The function associated with the distortion function is a distortion risk measure if for any random variable of gains (where is the Lp space) then where is the cumulative distribution function for and is the dual distortion function . If almost surely then is given by the Choquet integral, i.e.
Spectral risk measureA Spectral risk measure is a risk measure given as a weighted average of outcomes where bad outcomes are, typically, included with larger weights. A spectral risk measure is a function of portfolio returns and outputs the amount of the numeraire (typically a currency) to be kept in reserve. A spectral risk measure is always a coherent risk measure, but the converse does not always hold. An advantage of spectral measures is the way in which they can be related to risk aversion, and particularly to a utility function, through the weights given to the possible portfolio returns.
Tail value at riskTail value at risk (TVaR), also known as tail conditional expectation (TCE) or conditional tail expectation (CTE), is a risk measure associated with the more general value at risk. It quantifies the expected value of the loss given that an event outside a given probability level has occurred. There are a number of related, but subtly different, formulations for TVaR in the literature. A common case in literature is to define TVaR and average value at risk as the same measure.
Entropic value at riskIn financial mathematics and stochastic optimization, the concept of risk measure is used to quantify the risk involved in a random outcome or risk position. Many risk measures have hitherto been proposed, each having certain characteristics. The entropic value at risk (EVaR) is a coherent risk measure introduced by Ahmadi-Javid, which is an upper bound for the value at risk (VaR) and the conditional value at risk (CVaR), obtained from the Chernoff inequality. The EVaR can also be represented by using the concept of relative entropy.
Théorie moderne du portefeuilleLa théorie moderne du portefeuille est une théorie financière développée en 1952 par Harry Markowitz. Elle expose comment des investisseurs rationnels utilisent la diversification afin d'optimiser leur portefeuille, et quel devrait être le prix d'un actif étant donné son risque par rapport au risque moyen du marché. Cette théorie fait appel aux concepts de frontière efficiente, coefficient bêta, droite de marché des capitaux et droite de marché des titres. Sa formalisation la plus accomplie est le modèle d'évaluation des actifs financiers ou MEDAF.
Modèle d'évaluation des actifs financiersLe modèle d'évaluation des actifs financiers (MEDAF, ou en anglais Capital asset pricing model) est un modèle financier qui fournit une estimation du taux de rentabilité attendu par le marché pour un actif financier en fonction de son risque systématique. Le MEDAF ou capital asset pricing model explique la réalisation de l'équilibre du marché par l'offre et la demande pour chaque titre. Il permet de déterminer la rentabilité d'un actif risqué par son risque systématique. MEDAF est une traduction approximative de la version anglophone.