La théorie moderne du portefeuille est une théorie financière développée en 1952 par Harry Markowitz. Elle expose comment des investisseurs rationnels utilisent la diversification afin d'optimiser leur portefeuille, et quel devrait être le prix d'un actif étant donné son risque par rapport au risque moyen du marché. Cette théorie fait appel aux concepts de frontière efficiente, coefficient bêta, droite de marché des capitaux et droite de marché des titres. Sa formalisation la plus accomplie est le modèle d'évaluation des actifs financiers ou MEDAF.
Dans ce modèle, le rendement d'un actif est une variable aléatoire et un portefeuille est une combinaison linéaire pondérée d'actifs. Par conséquent, le rendement d'un portefeuille est également une variable aléatoire et possède une espérance et une variance.
L'idée de Markowitz dans sa gestion de portefeuille est simplement de panacher celui-ci d'une façon telle qu'on n'y fait pas de choix incohérents, conduisant par exemple à panacher des actions A et des actions B pour obtenir un couple revenu/risque moins bon à coût égal que ce qu'auraient procuré par exemple des actions C.
Sur le plan technique, il s'agit d'un problème d'optimisation quadratique assez banal. Son originalité est essentiellement l'application de ce modèle d'ingénieur au monde de la finance.
Le mathématicien Benoît Mandelbrot à travers ses nombreux travaux sur le sujet (notamment son étude historique sur le cours du marché du coton sur plus d'un siècle) remet en question la validité de la théorie de Harry Markowitz et de son corollaire le MEDAF, développé par William F. Sharpe. Il considère que ces théories, issues de l’École de Chicago, si belles soient-elles en apparence et si simples dans leur application, sont totalement déconnectées de la réalité des marchés financiers. Elles ont été maintes fois remises en cause lors, notamment, des différents krachs boursiers qu'elles ont été incapables de prévoir. Elles ont conduit à des politiques de gestion des risques pouvant être qualifiées d'irresponsables de la part des institutions financières.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course presents the problem of static optimization, with and without (equality and inequality) constraints, both from the theoretical (optimality conditions) and methodological (algorithms) point
This course provides an overview of the theory of asset pricing and portfolio choice theory following historical developments in the field and putting
emphasis on theoretical models that help our unde
The course provides a market-oriented framework for analyzing the major financial decisions made by firms. It provides an introduction to valuation techniques, investment decisions, asset valuation, f
Explore la théorie du portefeuille en mettant l'accent sur la stratégie de parité des risques, en discutant de l'allocation d'actifs proportionnelle à l'inverse de la volatilité et en comparant différents portefeuilles diversifiés.
Couvre les compromis en matière de risque et de rendement dans les portefeuilles, les avantages de la diversification et la frontière efficace avec de multiples actifs.
Le modèle d'évaluation des actifs financiers (MEDAF, ou en anglais Capital asset pricing model) est un modèle financier qui fournit une estimation du taux de rentabilité attendu par le marché pour un actif financier en fonction de son risque systématique. Le MEDAF ou capital asset pricing model explique la réalisation de l'équilibre du marché par l'offre et la demande pour chaque titre. Il permet de déterminer la rentabilité d'un actif risqué par son risque systématique. MEDAF est une traduction approximative de la version anglophone.
Le risque est la possibilité de survenue d'un événement indésirable, la probabilité d’occurrence d'un péril probable ou d'un aléa. Le risque est une notion complexe, de définitions multiples car d'usage multidisciplinaire. Néanmoins, il est un concept très usité depuis le , par exemple sous la forme de l'expression , notamment pour qualifier, dans le sens commun, un événement, un inconvénient qu'il est raisonnable de prévenir ou de redouter l'éventualité.
In probability theory and statistics, a covariance matrix (also known as auto-covariance matrix, dispersion matrix, variance matrix, or variance–covariance matrix) is a square matrix giving the covariance between each pair of elements of a given random vector. Any covariance matrix is symmetric and positive semi-definite and its main diagonal contains variances (i.e., the covariance of each element with itself). Intuitively, the covariance matrix generalizes the notion of variance to multiple dimensions.
This article presents a portfolio construction approach that combines the hierarchical clustering of a large asset universe with the stock price momentum. On one hand, investing in high-momentum stocks enhances returns by capturing the momentum premium. On ...
This thesis investigates the relationship between investors' demand shocks and asset pricesthrough the use of data on portfolio holdings. In three chapters, I study the theory, estimation,and application of demand-based asset pricing models, which incorpor ...
Using data on international equity portfolio allocations by U.S. mutual funds, we estimate a portfolio expression derived from a standard mean-variance portfolio model extended with portfolio frictions. The optimal portfolio depends on the previous month a ...