Axiome de limitation de tailleEn théorie des ensembles, plus précisément en théorie des classes, l'axiome de limitation de taille a été proposé par John von Neumann dans le cadre de sa théorie des classes. Il formalise en partie le principe de limitation de taille (traduction de l'anglais limitation of size), l'un des principes énoncés par Bertrand Russell pour développer la théorie des ensembles en évitant les paradoxes, et qui reprend des idées de Georg Cantor.
Théorèmes d'incomplétude de GödelLes théorèmes d'incomplétude de Gödel sont deux théorèmes célèbres de logique mathématique, publiés par Kurt Gödel en 1931 dans son article (« Sur les propositions formellement indécidables des Principia Mathematica et des systèmes apparentés »). Ils ont marqué un tournant dans l'histoire de la logique en apportant une réponse négative à la question de la démonstration de la cohérence des mathématiques posée plus de 20 ans auparavant par le programme de Hilbert.
Axiome de la paireEn mathématiques, l'axiome de la paire est l'un des axiomes de la théorie des ensembles, plus précisément des théories des ensembles de Zermelo et de Zermelo-Fraenkel. Essentiellement, l'axiome affirme que : deux ensembles quelconques peuvent toujours former un nouvel ensemble, que l'on appelle paire, auquel ils appartiennent tous deux et ce sont les seuls. Dans le langage formel de l'axiomatique de Zermelo-Fraenkel, l'axiome s'écrit : qui se lit en français : étant donné a et b deux ensembles, il existe un ensemble c tel que, pour tout ensemble x, x est un élément de c si et seulement si x est égal à a ou à b.
Set-builder notationIn set theory and its applications to logic, mathematics, and computer science, set-builder notation is a mathematical notation for describing a set by enumerating its elements, or stating the properties that its members must satisfy. Defining sets by properties is also known as set comprehension, set abstraction or as defining a set's intension. Set (mathematics)#Roster notation A set can be described directly by enumerating all of its elements between curly brackets, as in the following two examples: is the set containing the four numbers 3, 7, 15, and 31, and nothing else.
Schéma d'axiomesEn logique mathématique, la notion de schéma d’axiomes généralise celle d'axiome. Un schéma d’axiomes est une formule exprimée dans le métalangage d'un système axiomatique, dans lequel une ou plusieurs métavariables apparaissent. Ces variables, qui sont des constructions métalinguistiques, représentent n'importe quel terme ou sous-formule du système logique, qui peut être (ou ne pas être) tenu de satisfaire certaines conditions. Souvent, de telles conditions exigent que certaines des variables soient libres, ou que certaines variables n'apparaissent pas dans la sous-formule ou le terme.