Axiome de limitation de tailleEn théorie des ensembles, plus précisément en théorie des classes, l'axiome de limitation de taille a été proposé par John von Neumann dans le cadre de sa théorie des classes. Il formalise en partie le principe de limitation de taille (traduction de l'anglais limitation of size), l'un des principes énoncés par Bertrand Russell pour développer la théorie des ensembles en évitant les paradoxes, et qui reprend des idées de Georg Cantor.
Théorèmes d'incomplétude de GödelLes théorèmes d'incomplétude de Gödel sont deux théorèmes célèbres de logique mathématique, publiés par Kurt Gödel en 1931 dans son article (« Sur les propositions formellement indécidables des Principia Mathematica et des systèmes apparentés »). Ils ont marqué un tournant dans l'histoire de la logique en apportant une réponse négative à la question de la démonstration de la cohérence des mathématiques posée plus de 20 ans auparavant par le programme de Hilbert.
Axiome de la paireEn mathématiques, l'axiome de la paire est l'un des axiomes de la théorie des ensembles, plus précisément des théories des ensembles de Zermelo et de Zermelo-Fraenkel. Essentiellement, l'axiome affirme que : deux ensembles quelconques peuvent toujours former un nouvel ensemble, que l'on appelle paire, auquel ils appartiennent tous deux et ce sont les seuls. Dans le langage formel de l'axiomatique de Zermelo-Fraenkel, l'axiome s'écrit : qui se lit en français : étant donné a et b deux ensembles, il existe un ensemble c tel que, pour tout ensemble x, x est un élément de c si et seulement si x est égal à a ou à b.
Set-builder notationIn set theory and its applications to logic, mathematics, and computer science, set-builder notation is a mathematical notation for describing a set by enumerating its elements, or stating the properties that its members must satisfy. Defining sets by properties is also known as set comprehension, set abstraction or as defining a set's intension. Set (mathematics)#Roster notation A set can be described directly by enumerating all of its elements between curly brackets, as in the following two examples: is the set containing the four numbers 3, 7, 15, and 31, and nothing else.
Schéma d'axiomesEn logique mathématique, la notion de schéma d’axiomes généralise celle d'axiome. Un schéma d’axiomes est une formule exprimée dans le métalangage d'un système axiomatique, dans lequel une ou plusieurs métavariables apparaissent. Ces variables, qui sont des constructions métalinguistiques, représentent n'importe quel terme ou sous-formule du système logique, qui peut être (ou ne pas être) tenu de satisfaire certaines conditions. Souvent, de telles conditions exigent que certaines des variables soient libres, ou que certaines variables n'apparaissent pas dans la sous-formule ou le terme.
Théorie des typesEn mathématiques, logique et informatique, une théorie des types est une classe de systèmes formels, dont certains peuvent servir d'alternatives à la théorie des ensembles comme fondation des mathématiques. Ils ont été historiquement introduits pour résoudre le paradoxe d'un axiome de compréhension non restreint. En théorie des types, il existe des types de base et des constructeurs (comme celui des fonctions ou encore celui du produit cartésien) qui permettent de créer de nouveaux types à partir de types préexistant.
Hereditarily finite setIn mathematics and set theory, hereditarily finite sets are defined as finite sets whose elements are all hereditarily finite sets. In other words, the set itself is finite, and all of its elements are finite sets, recursively all the way down to the empty set. A recursive definition of well-founded hereditarily finite sets is as follows: Base case: The empty set is a hereditarily finite set. Recursion rule: If a1,...,ak are hereditarily finite, then so is {a1,...,ak}.
Ordinal de HartogsEn théorie des ensembles, l'ordinal de Hartogs d'un ensemble A désigne le plus petit ordinal qui ne s'injecte pas dans A. Son existence utilise le remplacement et se démontre sans l'axiome du choix, contrairement au théorème de Zermelo qui revient à l'existence d'un ordinal en bijection avec A, et équivaut, lui, à l'axiome du choix. L'ordinal de Hartogs étant nécessairement un ordinal initial, ou cardinal, on parle également de cardinal de Hartogs.
Axiome de l'ensemble videL'axiome de l'ensemble vide est, en mathématiques, l'un des axiomes possibles de la théorie des ensembles. Comme son nom l'indique, il permet de poser l'existence d'un ensemble vide. Dans les présentations modernes, il n'est plus mentionné parmi les axiomes des théories des ensembles de Zermelo, ou Zermelo-Fraenkel, car il est conséquence en logique du premier ordre du schéma d'axiomes de compréhension.
Axiome de la réunionEn théorie des ensembles, l’axiome de la réunion (ou «axiome de la somme») est l'un des axiomes de la théorie des ensembles de Zermelo-Fraenkel, ZF. Il affirme que, pour tout ensemble A, il existe un ensemble qui contient tous les éléments des ensembles éléments de l'ensemble A, et seulement ceux-ci (le contexte est celui d'une théorie où tous les objets sont des ensembles, en particulier A est un ensemble d'ensembles, sinon il faut le préciser).