Xanthine (ˈzænθiːn or ˈzænθaɪn, from Ancient Greek ξανθός xanthós "yellow" due to its yellowish-white appearance; archaically xanthic acid; systematic name 3,7-dihydropurine-2,6-dione) is a purine base found in most human body tissues and fluids, as well as in other organisms. Several stimulants are derived from xanthine, including caffeine, theophylline, and theobromine.
Xanthine is a product on the pathway of purine degradation.
It is created from guanine by guanine deaminase.
It is created from hypoxanthine by xanthine oxidoreductase.
It is also created from xanthosine by purine nucleoside phosphorylase.
Xanthine is subsequently converted to uric acid by the action of the xanthine oxidase enzyme.
Xanthine is used as a drug precursor for human and animal medications, and is manufactured as a pesticide ingredient.
Derivatives of xanthine (known collectively as xanthines) are a group of alkaloids commonly used for their effects as mild stimulants and as bronchodilators, notably in the treatment of asthma or influenza symptoms. In contrast to other, more potent stimulants like sympathomimetic amines, xanthines mainly act to oppose the actions of adenosine, and increase alertness in the central nervous system.
Methylxanthines (methylated xanthines), which include caffeine, aminophylline, IBMX, paraxanthine, pentoxifylline, theobromine, theophylline, and 7-methylxanthine (heteroxanthine), among others, affect the airways, increase heart rate and force of contraction, and at high concentrations can cause cardiac arrhythmias. In high doses, they can lead to convulsions that are resistant to anticonvulsants. Methylxanthines induce gastric acid and pepsin secretions in the gastrointestinal tract. Methylxanthines are metabolized by cytochrome P450 in the liver.
If swallowed, inhaled, or exposed to the eyes in high amounts, xanthines can be harmful, and may cause an allergic reaction if applied topically.