Concept

Ordered ring

In abstract algebra, an ordered ring is a (usually commutative) ring R with a total order ≤ such that for all a, b, and c in R: if a ≤ b then a + c ≤ b + c. if 0 ≤ a and 0 ≤ b then 0 ≤ ab. Ordered rings are familiar from arithmetic. Examples include the integers, the rationals and the real numbers. (The rationals and reals in fact form ordered fields.) The complex numbers, in contrast, do not form an ordered ring or field, because there is no inherent order relationship between the elements 1 and i. In analogy with the real numbers, we call an element c of an ordered ring R positive if 0 < c, and negative if c < 0. 0 is considered to be neither positive nor negative. The set of positive elements of an ordered ring R is often denoted by R+. An alternative notation, favored in some disciplines, is to use R+ for the set of nonnegative elements, and R++ for the set of positive elements. If is an element of an ordered ring R, then the absolute value of , denoted , is defined thus: where is the additive inverse of and 0 is the additive identity element. A discrete ordered ring or discretely ordered ring is an ordered ring in which there is no element between 0 and 1. The integers are a discrete ordered ring, but the rational numbers are not. For all a, b and c in R: If a ≤ b and 0 ≤ c, then ac ≤ bc. This property is sometimes used to define ordered rings instead of the second property in the definition above. |ab| = |a| |b|. An ordered ring that is not trivial is infinite. Exactly one of the following is true: a is positive, -a is positive, or a = 0. This property follows from the fact that ordered rings are abelian, linearly ordered groups with respect to addition. In an ordered ring, no negative element is a square: Firstly, 0 is square. Now if a ≠ 0 and a = b2 then b ≠ 0 and a = (-b)2; as either b or -b is positive, a must be nonnegative. The list below includes references to theorems formally verified by the IsarMathLib project.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.