Résumé
vignette|Les symboles plus et moins sont utilisés pour indiquer le signe d'un nombre En arithmétique, le signe d'un nombre réel qualifie sa position par rapport à zéro. Un nombre est dit positif s'il est supérieur ou égal à zéro ; il est dit négatif s'il est inférieur ou égal à zéro. Le nombre zéro lui-même est donc à la fois positif et négatif. Le signe arithmétique est souvent noté à l'aide des signes algébriques « + » et « − » (plus et moins), notamment dans un tableau de signe. En effet, un nombre écrit en chiffres est précédé du signe « − » s'il est négatif. Mais cette notation peut engendrer des confusions lorsque les signes plus et moins sont utilisés comme opérateurs. Notamment, l'expression −a est positive, si a est négatif. Le changement de signe d'une expression algébrique est la soustraction de cette expression à l'élément nul. Il est noté à l'aide du signe « − » précédant l'expression. Un énoncé explicite de la règle des signes apparaît dans l'Arithmetica de Diophante d'Alexandrie () : On la trouve également dans des textes comme l’Arybhatiya, du nom de son auteur le mathématicien indien Âryabhata (476 – 550). Ce dernier y définit les règles d'addition et de soustraction entre les nombres négatifs, représentant des dettes, et les nombres positifs quantifiant les recettes. Quelques siècles plus tard, dans les écrits du mathématicien perse Abu l-Wafa (940 – 998), apparaissent des produits de nombres négatifs par des nombres positifs. Cependant le nombre négatif reste encore attaché à une interprétation concrète. Une démonstration algébrique de la règle des signes a été donnée par Ibn al-Banna (1256 - 1321). En Occident, elle est énoncée par Nicolas Chuquet (c. 1450 - 1487) : Il faut attendre le pour que les calculs algébriques s'appliquent aussi bien aux négatifs qu'au positifs. Mais D'Alembert (1717 – 1783) lui-même montrera encore quelques réserves sur les nombres négatifs dans l'encyclopédie : Il y explique la règle des signes comme suit : Les opérations d'addition et de multiplication ont été étendues aux nombres négatifs de façon à préserver les propriétés d'associativité, de commutativité et de distributivité.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.