thumb|Représentation d'un nanotube de carbone. (cliquer pour voir l'animation tridimensionnelle).
thumb|Un nanotube de carbone monofeuillet.
thumb|Extrémité d'un nanotube, vue au microscope électronique.
Les nanotubes de carbone (en anglais, carbon nanotube ou CNT) sont une forme allotropique du carbone appartenant à la famille des fullerènes. Ils sont composés d'un ou plusieurs feuillets d'atomes de carbone enroulés sur eux-mêmes formant un tube. Le tube peut être fermé ou non à ses extrémités par une demi-sphère. On distingue les nanotubes de carbone simple-feuillet (SWNT ou SWCNT, pour Single-Walled (Carbon) Nanotubes) et multi-feuillets (MWNT ou MWCNT, pour Multi-Walled (Carbon) Nanotubes).
Les conductivité électrique, conductivité thermique et résistance mécanique des nanotubes de carbone sont remarquablement élevées dans leur sens longitudinal. Ils font partie des produits issus des nanotechnologies actuellement utilisés et commercialisés dans différents domaines.
En 2006, un éditorial de Marc Monthioux et Vladimir Kuznetsov du journal Carbon a décrit l'intéressante et pourtant méconnue origine des nanotubes de carbone. Une très grande partie des revues de toute nature attribuent, à tort, la découverte de tubes nanométriques composés de feuillets de graphite à Sumio Iijima (NEC) en 1991. Bien que ses publications aient marqué le point de départ de l'intérêt pour ces structures, Sumio Iijima n'a pas été le premier à observer un nanotube de carbone (voir plus bas) ; quant au premier à en avoir créé, il demeure inconnu. En effet, dès la découverte du feu il y a environ , il s'en produisait déjà (en infime quantité) dans la suie des foyers, où, fractionnées sous l’effet de la chaleur, les molécules de carbone voient leurs atomes se recombiner d'innombrables façons, donnant naissance tantôt à de minuscules gouttes amorphes, tantôt à des nanostructures géodésiques.
La première observation réelle de nanotubes semble dater de 1952, année où L. V. Radushkevich et V. M.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This lecture overviews and discusses the last trends in the technology and principles of nanoelectronic devices for more aggressive scaling, better performances, added functionalities and lower energy
This course provides the trends in nanoelectronics for scaling, better performances and lower energy per function. It covers fundamental phenomena of nanoscale devices, beyond CMOS steep slope switche
Main aim of the course is to introduce, in designing of modern wearable and implantable devices, the new concept of co-design three system' layers: Bio for Specificity, Nano for Sensitivity, and CMOS
Explore les propriétés du graphène, la structure des bandes, l'électronique et les phénomènes à l'échelle nanométrique tels que l'effet Quantum Hall et l'effet Casimir.
Explore la chimie du silicium et des composés du carbone, y compris les différences de conductivité, l'existence de composés, l'histoire des nanotubes de carbone et l'impact environnemental du dioxyde de carbone.
Explore l'application des nanotubes de carbone dans l'amélioration du transfert d'électrons pour les biocapteurs, en mettant l'accent sur leur rôle dans l'amélioration des limites de sensibilité et de détection.
Le graphène est un matériau bidimensionnel cristallin, forme allotropique du carbone dont l'empilement constitue le graphite. Cette définition théorique est donnée par le physicien en 1947. Par la suite, le travail de différents groupes de recherche permettra de se rendre compte que la structure du graphène tout comme ses propriétés ne sont pas uniques et dépendent de sa synthèse/extraction (détaillée dans la section Production).
Les nanosciences et nanotechnologies (d’après le grec , « nain »), ou NST, peuvent être définies au minimum comme l’ensemble des études et des procédés de fabrication et de manipulation de structures (physiques, chimiques ou biologiques), de dispositifs et de systèmes matériels à l’échelle du nanomètre (nm), qui est l'unité la plus proche de la distance entre deux atomes. Les NST présentent plusieurs acceptions liées à la nature transversale de cette jeune discipline.
vignette|Fibres de polyester observées au Microscopie électronique à balayage. vignette|La fabrication d'une éolienne fait intervenir le moulage de composites résines/renforts. Les polymères (étymologie : du grec polus, plusieurs, et meros, partie) constituent une classe de matériaux. D'un point de vue chimique, un polymère est une substance composée de macromolécules et issue de molécules de faible masse moléculaire. Un polymère est caractérisé par le degré de polymérisation.
Plasmonic photochemistry has a large potential to replace energy-intensive chemical processes with low-temperature, low-pressure light-driven chemical reactions. Plasmonic nanostructures have emerged as promising photocatalysts with exceptional and tunable ...
EPFL2024
,
The invention of 3D atomic force microscopy (3D-AFM) has enabled visualizing subnanoscale 3D hydration structures. Meanwhile, its applications to imaging flexible molecular chains have started to be experimentally explored. However, the validity and princi ...
One-dimensional materials have gained much attention in the last decades: from carbon nanotubes to ultrathin nanowires to few-atom atomic chains, these can all display unique electronic properties and great potential for next-generation applications. Exfol ...