In information theory, the information content, self-information, surprisal, or Shannon information is a basic quantity derived from the probability of a particular event occurring from a random variable. It can be thought of as an alternative way of expressing probability, much like odds or log-odds, but which has particular mathematical advantages in the setting of information theory. The Shannon information can be interpreted as quantifying the level of "surprise" of a particular outcome. As it is such a basic quantity, it also appears in several other settings, such as the length of a message needed to transmit the event given an optimal source coding of the random variable. The Shannon information is closely related to entropy, which is the expected value of the self-information of a random variable, quantifying how surprising the random variable is "on average". This is the average amount of self-information an observer would expect to gain about a random variable when measuring it. The information content can be expressed in various units of information, of which the most common is the "bit" (more correctly called the shannon), as explained below. Claude Shannon's definition of self-information was chosen to meet several axioms: An event with probability 100% is perfectly unsurprising and yields no information. The less probable an event is, the more surprising it is and the more information it yields. If two independent events are measured separately, the total amount of information is the sum of the self-informations of the individual events. The detailed derivation is below, but it can be shown that there is a unique function of probability that meets these three axioms, up to a multiplicative scaling factor. Broadly, given a real number and an event with probability , the information content is defined as follows: The base b corresponds to the scaling factor above. Different choices of b correspond to different units of information: when b = 2, the unit is the shannon (symbol Sh), often called a 'bit'; when b = e, the unit is the natural unit of information (symbol nat); and when b = 10, the unit is the hartley (symbol Hart).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (10)
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
MGT-448: Statistical inference and machine learning
This course aims to provide graduate students a thorough grounding in the methods, theory, mathematics and algorithms needed to do research and applications in machine learning. The course covers topi
PHYS-325: Introduction to plasma physics
Introduction à la physique des plasmas destinée à donner une vue globale des propriétés essentielles et uniques d'un plasma et à présenter les approches couramment utilisées pour modéliser son comport
Afficher plus
Publications associées (134)
Concepts associés (16)
Shannon (unité)
Le shannon est une unité de mesure logarithmique de l'information. L'unité est égale à l'information contenue dans un bit dont la valeur est imprévisible et les deux valeurs également probables. 1 Sh ≈ 0,693 nat ≈ 0,301 . La quantité d'information contenue dans un message est ainsi le nombre de bits minimal pour le transmettre ; soit le logarithme en base 2 du nombre de possibilités de messages différents dans le même code. La compression de données consiste à rapprocher le nombre de bits du nombre de shannons.
Logarithme binaire
En mathématiques, le logarithme binaire (log2 n) est le logarithme de base 2. C’est la fonction réciproque de la fonction puissance de deux : x ↦ 2x. Le logarithme binaire de x est la puissance à laquelle le nombre 2 doit être élevé pour obtenir la valeur x, soit : . Ainsi, le logarithme binaire de 1 est 0, le logarithme binaire de 2 est 1, le logarithme binaire de 4 est 2, le logarithme binaire de 8 est 3. On le ld () (pour logarithmus dualis), mais la norme ISO 80000-2 indique que log2(x) devrait être symbolisé par lb (x).
Unité de mesure en informatique
Les unités de mesure suivantes sont utilisées en informatique pour quantifier la taille de la mémoire d'un dispositif numérique (ordinateur, Baladeur numérique), l'espace utilisable sur un disque dur, une clé USB, la taille d'un fichier, d'un répertoire ou autre.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.