Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les méthodes du noyau dans l'apprentissage automatique, en se concentrant sur le surajustement, la sélection du modèle, la validation croisée, la régularisation, les fonctions du noyau et la SVM.
Introduit le Support Vector Clustering (SVC) à l'aide d'un noyau gaussien pour la cartographie spatiale des caractéristiques de grande dimension et explique ses contraintes et Lagrangian.
Explore les méthodes du noyau dans l'apprentissage automatique, en mettant l'accent sur leur application dans les tâches de régression et la prévention du surajustement.
Introduit les bases de la détection de bord, y compris la mesure du contraste, les images de gradient, l'interprétation de Fourier, les fonctions gaussiennes, le détecteur de bord Canny et les applications industrielles.
Explore les relations d'incertitude, l'impulsion gaussienne, la densité de pseudo-probabilité et les fonctions de Gabor dans les signaux et les systèmes.
Explore les méthodes du noyau pour les surfaces de séparation non linéaires à l'aide de noyaux polynômes et gaussiens dans les algorithmes Perceptron et SVM.