In this thesis, we study the mechanics of tight physical knots. Knots are omnipresent in surgery, climbing, and sailing, with disastrous consequences when the filament or the rope fails to perform its function. Even if the importance of mechanical analysis ...
In this thesis, we give a modern treatment of Dwyer's tame homotopy theory using the language of ∞-categories.
We introduce the notion of tame spectra and show it has a concrete algebraic description.
We then carry out a study of ∞-operads an ...
We perform a compare-and-contrast investigation between the equilibrium shapes of physical and ideal trefoil knots, both in closed and open configurations. Ideal knots are purely geometric abstractions for the tightest configuration tied in a perfectly fle ...
Strongly torsion generated groups are those with a single normal generator, of arbitrary finite order. They are useful for realizing sequences of abelian groups as homology groups. Known examples include stable alternating groups and stable groups generate ...
As shown by Michel and Ramakrishnan (2007) and later generalized by Feigon and Whitehouse (2008), there are "stable" formulas for the average central L-value of the Rankin-Selberg convolutions of some holomorphic forms of fixed even weight and large level ...
φ For all finite n ∈ N, there is a well-known isomorphism between the standard braid group Bn and the mapping class group π0Hn. This isomorphism has been exhaustively studied in literature, and generalized in many ways. For some basic topological reason, t ...