Concept

Effet Wallace

Résumé
Reinforcement is a process of speciation where natural selection increases the reproductive isolation (further divided to pre-zygotic isolation and post-zygotic isolation) between two populations of species. This occurs as a result of selection acting against the production of hybrid individuals of low fitness. The idea was originally developed by Alfred Russel Wallace and is sometimes referred to as the Wallace effect. The modern concept of reinforcement originates from Theodosius Dobzhansky. He envisioned a species separated allopatrically, where during secondary contact the two populations mate, producing hybrids with lower fitness. Natural selection results from the hybrid's inability to produce viable offspring; thus members of one species who do not mate with members of the other have greater reproductive success. This favors the evolution of greater prezygotic isolation (differences in behavior or biology that inhibit formation of hybrid zygotes). Reinforcement is one of the few cases in which selection can favor an increase in prezygotic isolation, influencing the process of speciation directly. This aspect has been particularly appealing among evolutionary biologists. The support for reinforcement has fluctuated since its inception, and terminological confusion and differences in usage over history have led to multiple meanings and complications. Various objections have been raised by evolutionary biologists as to the plausibility of its occurrence. Since the 1990s, data from theory, experiments, and nature have overcome many of the past objections, rendering reinforcement widely accepted, though its prevalence in nature remains unknown. Numerous models have been developed to understand its operation in nature, most relying on several facets: genetics, population structures, influences of selection, and mating behaviors. Empirical support for reinforcement exists, both in the laboratory and in nature. Documented examples are found in a wide range of organisms: both vertebrates and invertebrates, fungi, and plants.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.