Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore le but et le processus de normalisation par lots dans les réseaux neuronaux profonds, en soulignant son importance dans la stabilisation de l'entrée moyenne et la résolution du problème du gradient de fuite.
Explore une approche de réseau neuronal à la tomographie d'état quantique utilisant RBM, présentant des prédictions précises et des applications potentielles au-delà de RBM.
Plonge dans la propagation en arrière dans l'apprentissage profond, répondant au défi de la disparition du gradient et à la nécessité d'unités cachées efficaces.
Explore l'évolution des systèmes d'image sociale, des modèles d'apprentissage en profondeur, des selfies et de la biométrie sur les plateformes en ligne.
Discute du décalage d'entrée moyen et du problème de biais dans les mises à jour de poids pour les réseaux neuronaux, soulignant l'importance d'une initialisation correcte pour prévenir les problèmes de gradient.
Explore le modèle de perceptron multicouche, la formation, l'optimisation, le prétraitement des données, les fonctions d'activation, la rétropropagation et la régularisation.